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SU(4) symmetry breaking and induced superconductivity in graphene quantum Hall edges
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In graphene, the approximate SU(4) symmetry associated with the spin and valley degrees of freedom in the
quantum Hall (QH) regime is reflected in the fourfold degeneracy of graphene’s Landau levels (LLs). Interactions
and the Zeeman effect break such approximate symmetry and lift the corresponding degeneracy of the LLs. We
study how the breaking of the approximate SU(4) symmetry affects the properties of graphene’s QH edge modes
located in proximity to a superconductor. We show how the lifting of the fourfold degeneracy qualitatively
modifies the transport properties of the QH-superconductor heterojunction. For the zero LL, by placing the edge
modes in proximity to a superconductor, it is, in principle, possible to realize a 1D topological superconductor
supporting Majoranas in the presence of sufficiently strong Zeeman field. We estimate the topological gap of
such a topological superconductor and relate it to the properties of the QH-superconductor interface.
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I. INTRODUCTION

Heterojunctions formed by two-dimensional electron gases
(2DEGs) in the quantum Hall (QH) regime, placed in the
proximity of a superconductor (SC), are ideal to realize one-
dimensional topological superconductors [1–4] and are the
only realistic systems in which it is expected that not only
Majorana zero modes [5] but also more complex non-Abelian
anyons can be realized [1,2,6]. In recent years, advances in
material and device fabrication have allowed the realization
of high-quality QH-SC systems [7–13] that have shown sig-
natures of superconducting correlations induced in the edge
modes of QH states. Such experiments have motivated several
theoretical works [14–26] that addressed some of the limita-
tions of simple models. QH-SC systems based on graphene
[7–11,13] are particularly promising for several reasons: by
encapsulating the graphene layer in hexagonal boron nitride
(hBN), high-quality, low-disorder devices can be realized;
they can be driven into robust QH states with smaller values
of the magnetic field (B) than regular 2DEGs due to the fact
that for 2D Dirac materials the Landau level (LL) energies
En scale with the square root of B, En = sgn(n)vF

√
2eh̄B|n|

with vF the graphene’s Fermi velocity and n ∈ N [27,28],
rather than linearly with B, as for 2D systems with parabolic
bands. These features have recently enabled the observation
of superconducting correlations between the edge states of
fractional QH states [11], the first step toward the realization
of parafermions.

In any QH-SC system, due to the large magnetic field
necessary to drive the 2DEG into the QH regime, the presence
of a Zeeman term is unavoidable. Given that almost all known
superconductors are spin singlet superconductors, in almost
all QH-SC systems the QH edge states that can be paired
via the proximity effect are counter-propagating states with
opposite spin polarization. As a consequence, our results,
by showing how the spin-polarization affects the properties
of edge states at QH-SC interfaces, are important to assess
the feasibility, even in the ideal conditions of no disorder

and extremely low temperatures, of realizing 1D topological
superconducting states, supporting non-Abelian quasiparticle
states at their ends, using QH-SC systems.

In graphene, due to the spin and valley degeneracy, we have
an approximate fourfold degeneracy of the fermionic states.
As a consequence, in the presence of a strong perpendicular
magnetic field, graphene well approximates a SU(4) quantum
Hall Ferromagnet [29–32]. The approximate SU(4) symmetry
is broken by Zeeman and interaction effects [33–36]. The
breaking of the SU(4) symmetry can significantly affect the
strength of the superconducting correlation induced among
the QH’s edge modes by proximity to a SC, and therefore
modify the conditions required for the realization of non-
Abelian anyons in QH-SC systems.

In this paper, we study the effect that the breaking of the
SU(4) symmetry of graphene’s Landau levels (LLs) has on
the nature and strength of electron-hole (e-h) conversion pro-
cesses (Andreev reflection processes) at the interface between
the integer QH (IQH) edge and an s-wave superconductor. For
n > 0 LLs, the breaking of the the SU(4) symmetry causes
the edge modes’ drift velocity (vd ) to be spin and valley
dependent, and we find that this causes the e-h conversion
probability, Th-e, to oscillate as function of strength of the
SU(4) symmetry breaking terms. For the En = 0 LL, the
Coulomb interaction induces correlated phases [34–44] that
lift the degeneracy between particlelike and holelike states and
so breaks the effective SU(4) symmetry of the LL, and we
find that the interplay of the interaction’s effects and Zeeman
splitting (�Z ) can strongly affect the transport properties of
the En = 0 QH-edge modes at a QH-SC interface. Our results
show the effect that SU(4) breaking terms have on the e-h
conversion in graphene-based QH-SC systems and how, con-
versely, signatures in the transport properties of QH-SC edges
can be used to estimate the relative strength of such terms.
The dependence of such transport properties on �Z can also
be used to estimate the efficiency of e-h conversion at QH-SC
interfaces.
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II. MODEL

We consider the setup shown schematically in Fig. 2(a)
in which an interface of length Lsc is present between a SC
and a graphene layer in the IQH regime. In this situation,
the IQH edge modes, along the QH-SC interface, form a
chiral Andreev edge state (CAES), a coherent superposi-
tion of e-like and h-like edge states [45–49]. For graphene,
we assume armchairlike boundaries. Such boundaries do not
have intrinsic edge modes, like zigzag edges [50,51], and
therefore allow us to better study the intrinsic properties of
QH edge states [50]. It is also expected that in most experi-
mental setups, armchairlike boundaries better approximate the
devices’ edges than zigzag edges.

For En > 0 LLs, the SU(4) symmetry breaking can be
described by taking into account the presence of a Zeeman
term of strength �Z that splits the spin degeneracy and a
similar term, of strength �v , that lifts the valley degeneracy.
We consider an effective low-energy Boguliubov–de Gennes
Hamiltonian (HBdG) for the one-dimensional (1D) edge modes
located at the interface between the QH systems and the SC.
Assuming that no magnetic field is present in the SC, we have

ĤBdG = ψ†[h̄vd kτ0η0σ0 − h̄vd kF τzη0σ0 + (�Z/2)τ0η0σz

+ �̂K1K2 + �τxη0σ0]ψ, (1)

where ψ = (ckK1↑, ckK1↓, ckK2↑, ckK2↓, c†
−kK2↓,−c†

−kK2↑, c†
−kK1↓,

−c†
−kK1↑)T , with c†

kKiσ
, ckKiσ the creation and annihilation

operators, respectively, for an electron with momentum k,
and spin σ = ↑,↓, in the Ki valley. εk = h̄vd k is the edge
mode’s dispersion along the QH-SC interface with vd the drift
velocity, τi, ηi, and σi are 2 × 2 Pauli matrices in particle-
hole, valley, and spin space, respectively, � is the mean-field
superconducting gap, and kF is the Fermi wave vector at the
Fermi energy EF . In Eq. (1), �̂K1K2 = �v/2[cos(θv )τ0ηzσ0 +
sin(θv ) cos(φ)τzηxσ0 + sin(θv ) sin(φ)τzηyσ0], where θv , φ are
the angles that parametrize the direction in valley space of
the mean field lifting the valley degeneracy. For En > 0 LLs,
SU(4) breaking terms affect the transport properties of the
QH-SC edge by causing the edge modes’ drift velocity vd to
be spin and valley dependent. This is due to two mechanisms:
(i) such terms cause the effective tunneling between the QH
region and the SC to be dependent on the SU(4) flavor (see
Appendix B and (ii) the splitting due to these terms causes
edge states of different SU(4) flavors to have different Fermi
wave vectors and, therefore, when the confining potential
V (y) is not linear, different drift velocities. To exemplify the
physics, below we consider in detail the second mechanism
given that the further inclusion of the first mechanism is
straightforward and its effect is also in general quite smaller
(see Appendix B).

To understand how �Z induces a spin-dependent vd , we
can consider the simple case when V (y) = V0y2/(lV )2 for
y > 0 and V (y) = 0 for y < 0. V0 and lV are constants that
characterize the confining potential. Considering that y =
l2
Bk, with lB the magnetic length, in the limit dV/dy|εk=0 �

h̄ωc/lB, where ωc is the cyclotron frequency, we obtain vd↑↓ =
vd [ε̃F ∓ �Z/2]1/2, with vd = 2[l2

B/(h̄lV )][V0ε̃F ]1/2, and ε̃ ≡
EF − En, EF being the Fermi energy; see Fig. 1(b) and

FIG. 1. (a) Schematic of the QH-SC setup. (b) Dispersion of LL
with Zeeman splitting.

Appendix A. In the limit �Z � 2ε̃F , we have vd↑↓ = vd [1 ±
�Z/(4ε̃F )].

We first consider the case when �Z 	= 0 and �v = 0. This
situation is also directly relevant to QH-SC heterostructures
based on standard 2DEG systems. In this case HBdG can be
block-diagonalized with blocks Ĥ± = ψ

†
±H±ψ±, where H±

are 2 × 2 matrices and ψ+ = (ck↑, c†
−k↓), ψ− = (ck↓,−c†

−k↑).
Here we drop the valley indices since in this case the valleys
are degenerate. From the expressions of H± and the BdG
equation H±�±(x) = E�±(x), we can calculate the transfer
matrices [48,52]

M±(L, 0) = eiα

(
t± ∓ia±

∓ia± t∗
±

)
(2)

that relate the CAES’s state at the end, x = Lsc, of the QH-SC
interface, to the CAES’s state at the beginning, x = 0, of the
interface. In Eq. (2), α is a trivial phase and a± describes the
mixing of electrons and holes along the interface. Knowing
M±, we can obtain the probability for Andreev conversion
T (±)

h-e = |a±|2 of an electron with spin +/− =↑,↓ from lead
0 to lead 1 [see Fig. 1(a)]:

T (±)
h-e = �2 sin2 (Lscδke0h,±)

(h̄vs δkF,±)2 , (3)

with

δkh-e± = 1

h̄vs

√
�2 +

(
h̄vskF ± v̂E − v̂�Z/2

1 − v̂2

)2

. (4)

In Eqs. (3) and (4), v̂ ≡ va/vs, with vs ≡ (vd↑ + vd↓)/2, va ≡
(vd↑ − vd↓)/2.

The knowledge of T (±)
h-e allows us to obtain the resistance

RD between the superconducting terminal 2 and terminal 1 in
the absence of backscattering [10–12,21]. For filling factor ν,
we have

RD = RH

ν

(ν − 2Th-e)

2The
(5)

where RH = h/e2. For our case, ν = 6 (including the
En = 0 LLs) and Th-e = 2(T (+)

h-e + T (−)
h-e ) + 2T (0)

h-e and T (0)
h-e =

T (+)
h-e (E = 0, va = 0,�v/Z = 0) describes the Andreev con-

version of n = 0 LL states for which asymmetries due to
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FIG. 2. (a) BdG spectrum of a hybrid QH-SC structure in the LL
with and without (black) Zeeman field. (b) Drift velocity of CAESs
normalized by the vacuum drift velocity versus the Zeeman field.
Th-e (c), and RD (d), for ε̃F = 10 �, vs = 0.1�ξ/h̄, kF = 5h̄/ξ , and
Lsc = (0.5, 0.9, 2.0)ξ .

splittings are negligible. Equations (3)–(5) show how the spin
dependence of the edge mode velocities, by modifying δkh-e,
affects the electron-hole conversion taking place along the
QH-SC interface and its transport properties.

III. EFFECTS OF ZEEMAN AND VALLEY SPLITTING

To obtain a quantitative estimate of the effect of SU(4)-
breaking terms, we have also obtained the transport properties
at the QH-SC interface using a tight-binding (TB) model im-
plemented via the KWANT package [53]. Details of the model
can be found in Appendix C. Figure 2(a) shows the dispersion
of the CAES when En > 0 both for the case when �Z=�v=0,
and the one for which �v = 0 but �Z 	= 0. Figure 2(b) shows
the effect of �Z on the renormalized, spin-dependent drift
velocity. In the limit �Z = 0, for the chosen parameter values,
tunneling processes into the SC cause the renormalized vd to
be ∼9/10 of the vd at a QH-vacuum interface. The results
of Fig. 2(b) show that the scaling vdσ ∝ σ�Z , for �Z � ε̃F ,
obtained assuming a quadratic edge potential agrees well with
the scaling obtained from the TB-model calculation for �Z

as large as ∼0.5ε̃F Figures 2(c) and 2(d) show the total e-h
conversion probability, Th-e, and RD as a function of �Z for
ν = 6 and various Lsc, obtained assuming for v↑(�Z ) and
v↓(�Z ) the scalings ±�Z/(2ε̃F ) consistent with Fig. 2(b). In
the limit of Lsc > ξ , Fig. 2(d), we find that Th-e oscillates with
�Z and that the period of the oscillations decreases with �Z ,
in accordance with Eq. (4).

(a) (b)

(c) (d)

FIG. 3. (a) Drift velocities versus �Z for θv = 0, �v = ε̃F /2,
and ε̃F = 10 �. (b) Th-e versus �Z and �v for Lsc = 0.9 ξ , vs,s =
0.1�ξ/h̄, and kF = 5h̄/ξ . (c) RD corresponding to (b). (d) Line cuts
of RD for fixed �v = (0, 2.5, 5)�, blue, orange, and green traces,
respectively. Stars denote the values of RD when �Z = �v .

The results shown in Figs. 2(c) and 2(d) are qualitatively
valid also when the term �̂K1K2 does not break time reversal
(TR) symmetry, i.e., when θv = π/2, considering that the
TR operator in valley space is �v = Cηx, with C denoting
complex conjugation. As a consequence, for θv = π/2, �̂K1K2

only affects the average value of the drift velocity and does
not induce an asymmetry between the drift velocities of the
e-like and h-like states. The resulting transport properties at
the QH-SC edge mode are obtained from Eqs. (3)–(5) by
simply taking into account the renormalization of vs due to
�̂K1K2 .

When θv 	= π/2, the term �̂K1K2 breaks TR symme-
try and causes the drift velocities of the time-reversed
edge modes to be different. In this case, the effect
of �̂K1K2 can compound, or compensate, the effect of
�Z . Let vs,Ki ≡ (vd↑Ki + vd↓Ki )/2, va,Ki ≡ (vd↑Ki − vd↓Ki )/2,
and vs,s ≡ (vs,K1 + vs,K2 )/2, vs,a ≡ (vs,K1 − vs,K2 )/2, va,s ≡
(va,K1 + va,K2 )/2, va,a ≡ (va,K1 − va,K2 )/2. Using these defi-
nitions, and setting without loss of generality φ = 0, for the
case when θv = 0, the BdG Hamiltonian, including the valley
degrees of freedom, takes the form

ĤBdG = ψ†[h̄vs,skτ0η0σ0 + h̄vs,akτzηzσ0 + h̄va,skτzη0σz

+ h̄va,akτ0ηzσz + (�Z/2)τ0η0σz + (�v/2)τ0ηzσz

− h̄vs,skF τzη0σ0 + �τxη0σ0]ψ. (6)

Figure 3(a) shows the drift velocities vσ,Ki as a function of
Zeeman splitting for θv = 0 and fixed �v obtained assuming
a quadratic edge potential and �v,Z � ε̃F /2. From the values
vσ,Ki , we can block diagonalize Eq. (6) and calculate the mo-
mentum difference between coupled electron and hole modes.
Then we use Eqs. (3) and (5) to obtain Th-e and RD. We see that
as �Z increases, the velocity asymmetry becomes larger for a
pair of CAESs while becoming smaller for the other pair until
it vanishes when �Z = �v . One could expect a maximum Th-e

at this point, but Fig. 3(b) shows that while a mirror symmetry
about the �Z = �v line exists, Th-e is not maximum along this
line. Figure 3(c) shows the dependence of RD on �Z and �v .
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FIG. 4. (a) Dispersion of En = 0 graphene LL for the FM, CAF,
and AF phases with schematics illustrating the canting of spins on
different sublattices for each phase. RU (b), and RD (c), as a function
of ε̃F in the CAF phase. (d) T e-e

j,i and T h-e
j,i versus ε̃F for θ = π/6.

Lsc = 0.675ξ .

We find that when θv = 0, the dependence of RD on �Z is
different depending on the value of �v , as shown by the line
cuts presented in Fig. 3(d): the period of the oscillations of RD

with respect to �Z decreases as �v increases. By comparing
the experimentally measured RD as a function of �Z , by tun-
ing the in-plane component of the magnetic field, results like
the ones in Fig. 3(d) could allow the estimation of the strength
of the valley splitting term breaking time-reversal symmetry.

IV. n = 0: CANTED ANTIFERROMAGNETIC STATE

In the En = 0 LL, we have a degeneracy between parti-
clelike and holelike states. However, for the En = 0 LL, we
also have that the valley and sublattice degree of freedom are
locked to each other. Taking into account the spin degree of
freedom, the full, approximate symmetry for the En = 0 LL
is still SU(4). Besides the Zeeman effect, such approximate
symmetry is broken by interaction effects that drive the system
into a correlated state. Theoretical [37,39] and experimental
results [36,38,40,41,44] have shown that the likely correlated
state is a canted antiferromagnetic (CAF) state in which the
spin degree of freedom is locked with the sublattice degree
of freedom as shown schematically in the inset of Fig. 4(a).
Recent measurements [42,43], however, have shown evidence
for the establishment of an intervalley coherent phase charac-
terized by a Kekulé distortion [54]. Recent theoretical works
[55,56] have shown that the CAF and Kekulé phases can coex-
ist. Such coexistence would reconcile the recent observations
and the previous ones suggesting the presence of a CAF phase.
For �Z much smaller than the interaction strength Uint, also
for En = 0 LL, both in the CAF and Kekulé phase, the effect
of �Z on the transport properties at the QH-SC interface is
described by Eqs. (2)–(5). When �Z is comparable to or larger
than Uint, its effect on the transport properties of the QH-SC
interface can be significantly different from the one described
by Eqs. (2)–(5) [57], but qualitatively the same in the Kekulé

phase and CAF phase. In the remainder we focus on the CAF
phase.

For �Z � Uint, the CAF phase corresponds to an anti-
ferromagnetic (AFM) state, whereas for �Z  Uint the CAF
phase describes a ferromagnetic (FM) state [38]; see inset
Fig. 4(a). To describe the CAF phase to the tight-binding
Hamiltonian for graphene (section IV of the SM), we add
the term HAFM = (�AFM/2)[

∑
i(ψ

†
Ai

τzσxψAi − ψ
†
Bi

τzσxψBi )],

where ψ
†
Si

, ψSi , are the creation and annihilation operators
for an electron at site Si = (Ai, Bi ) with Ai, Bi the sites of
sublattices A, B, respectively, and �AFM the strength of the
mean-field describing the AFM phase. The term HAFM, with-
out Zeeman splitting, induces a bulk and edge gap at the
charge neutrality point, as seen in Fig. 4(a).

To describe the evolution from the AFM phase to the FM
phase, we set �AFM = �0 sin θ and �Z = �0 cos θ , where
�0 ≡ [�2

AFM + �2
Z ]1/2 is the total magnitude of the bulk gap,

and 2θ is the angle between the spin projections on sublattices
A and B. Figure 4(a) shows the evolution of the LL close to the
neutrality point as θ is varied: Gor θ = 0, we recover the FM
phase, and for θ = π/2 the AFM phase. When �Z 	= 0, the
lowest energy particlelike and holelike states approach close
to the edge causing the gap between edge states (�edge) to
be smaller than the gap between bulk states; Fig. 4(a). For
�Z 	= 0, close to the edge, the spin polarization becomes mo-
mentum dependent so forward and backward moving modes
have opposite spin polarizations. As a consequence, when
�Z ∼ �AFM, for the QH edge in proximity of the SC we can
have strong Andreev retroreflection.

Figures 4(b) and 4(c) show the calculated resistance RU

between terminal 2 and 0, and RD, respectively, as a function
of ε̃F for the En = 0 LL in the CAF phase for different values
of θ . Given that for �Z � �AFM we can have counterpropa-
gating modes, the equations for RD, Eq. (5), and RU have to be
generalized to take into account backscattering processes; see
Fig. 4(d) and SM. As θ increases RU decreases. This fact could
be used to extract the effect of interactions on the dispersion
of the En = 0 LL’s edge modes.

For �Z � �AFM, as we approach the FM phase, the n = 0
LL has counterpropagating edge modes with nontrivial spin
structure that appear to be ideal for the realization of a 1D
topological superconducting state supporting Majoranas at its
ends [4]. However, using realistic parameter values and the
full graphene-SC TB model, we find that no Majoranas are
present. To understand the issue, we map the CAF edge states
to the effective 1D model H = t k̂2 − εF + αk̂σy + JZσz with
k̂ ≡ ak, a = 2.46 Å being graphene’s lattice constant, and ex-
tract t and α from fitting the LL’s edges dispersion obtained
from the tight-binding model; see Fig. 7. For θ = π/4, using
the TB model parameters presented in Appendix D, we find
t = 63�, α = 7�. Given that for the CAF regime considered
we only have one helical band, we can set εF = 0 and set JZ

equal to the chemical potential of the single helical band. In
the remainder, we set JZ = 4�. The key difference between
the ideal 1D model and the edge at the QH-SC interface is
that for the latter the minimum of the bands when α = 0, in
general, is not located at a time-reversal invariant momentum
(k = 0), that for a QH-SC system corresponds to the edge
between QH region and SC. To take this into account in the
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FIG. 5. (a) Spectrum for effective 1D model with finite super-
conducting pairing � and small offset k0. (b) Topological gap �∗ as
a function of k0 for a fit corresponding to θ = π/4.

effective 1D model, we introduce a momentum offset k →
k + k0. As k0 increases, the band gap �∗ induced by the su-
perconducting paring becomes more indirect and is reduced,
as can be seen in Fig. 5. We see that �∗ vanishes when k0 ≈
10−2π/a. Considering that for B = 2 T lB ≈ 18 nm, we have
that �∗ will be vanishing when the distance between QH edge
modes and the SC edge is larger than 10−2(π/a)l2

B ≈ 2.3lB.
The fact that for realistic parameters’ values k0 > 10−2π/a
(see Fig. 7) explains why in our TB calculations no Majoranas
are observed, and points to an aspect that must be taken into
account in experiments.

V. CONCLUSION

In summary, we have studied how the breaking of the
approximate SU(4) symmetry of graphene’s Landau levels
affects the Andreev conversion processes of QH edges states
located in proximity of a superconductor. We have found
that contrary to statements in previous works, the Zeeman
splitting affects the electron-hole conversion probability at
QH-SC interfaces. We have shown that this is due to the fact
that a Zeeman splitting causes the drift velocity of electron
and holes to be spin dependent. In addition, we have included
the effect of valley splitting for graphene-based QH-SC het-
erostructures, shown that it also affects the e-h conversion,
and found how such conversion is modified by the interplay
of Zeeman and valley splittings. Our results show that, in gen-
eral, the probability of an electron to be converted into a hole
while traveling along the QH-SC interface, due to Andreev
processes, can strongly oscillate as a function of the strength
of the terms breaking the SU(4) symmetry, inducing oscilla-
tions of directly measurable transport properties that could be
used to extract the efficiency of the electron-hole conversion
and the magnitude of the SU(4) breaking terms. For the n = 0
graphene Landau level, we have obtained how three-terminal
QH-SC transport properties depend on the Fermi energy for
the various SU(4)-symmetry broken canted-antiferromagnetic
phases, and on the canting angle of such phases. These results
show that the canting angle of a CAF phase of the n = 0
graphene’s Landau level could be estimated by measuring the
transport properties at the QH-SC interface. In the limit of
large Zeeman splitting, the edge modes of the n = 0 LL have
all the properties to allow the realization, when proximitized
by a SC, of 1D topological superconducting states with Majo-
ranas. We have shown how the topological gap of such states
could be much lower than naïvely expected due to the nature

of the edge modes’ dispersion at the QH-SC interface. Our
results are directly relevant to the ongoing effort to induce
superconducting pairing correlations in graphene QH edge
states with the ultimate goal to realize non-Abelian anyons.
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APPENDIX A: FLAVOR-DEPENDENT DRIFT VELOCITY
DUE TO NON-LINEAR CONFINING POTENTIAL

Let us consider the generic Hamiltonian describing a free-
electron gas in the two-dimensional (2D) (x, y) plane,

H = ε̂(kx, ky) + V (y)11 − EF 11, (A1)

where ε̂(kx, ky) is a matrix, in orbital space, describing the
dispersion of the 2D electron system, k = (kx, ky) is the 2D
wave vector, V (y) is the confining potential defining the edge
of the sample, and EF is the Fermi energy. Let us assume
that translational symmetry is preserved along the x direction.
In this case, to include the effect of a magnetic field B per-
pendicular to the 2D electron system it is convenient to use
the gauge A = (−By, 0, 0). By replacing in (A1) k = (kx, ky )
with k − (e/c)A, we obtain the energy spectrum

E (k) = En + V
(
kl2

B

) − EF , (A2)

where {En} are the energies of the Landau levels, k ≡ kx,
and lB = [h̄c/(eB)]1/2 is the magnetic length. Equation (A2)
is valid for the common situation when ∂yV (y) � (En+1 −
En)/lB. {En} are momentum independent and so the drift ve-
locity of an edge state in the nth Landau level is determined
by the confining potential,

vd = 1

h̄

dEn

dk
= 1

h̄

dV

dk

∣∣∣∣
kF

= l2
B

h̄

dV

dy

∣∣∣∣
yF

, (A3)

where kF is the Fermi wave vector [E (kF ) = 0] and yF =
kF l2

B. A very natural and physical approximation for the con-
fining potential V (y) is

V (y) =

⎧⎪⎪⎨
⎪⎪⎩

(
V0/l2

V

)
(y − L0)2, y � L0(

V0/l2
V

)
(y + L0)2, y � −L0

0, −L0 < y < L0,

(A4)

where V0 (with units of energy) lV (with units of length)
are constants that parametrize the dependence of V on the
position, and 2L0 is the width of the QH system. For the states
at the Fermi energy on the y > 0 side of the sample, we have

yF = L0 + lV

√
ε̃F

V0
, (A5)
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where ε̃F ≡ EF − En, so

vd = l2
B

h̄

dV

dy

∣∣∣∣
yF

= 2l2
B

h̄lV

√
V0ε̃F . (A6)

In the presence of a Zeeman term, we have the spin de-
generacy of the energy levels, E (k) is lifted, and we have
E (k) = En + V (kl2

B) − EF ± �Z/2 and therefore two differ-
ent Fermi wave vectors, one for the spin-up state (kF+) and
one of the spin-down state (kF−), and, correspondingly, two
different values of yF :

yF,± = L0 + lV

√
ε̃F ∓ �Z/2

V0
. (A7)

The fact that yF,+ 	= yF,− implies that when V (y) is not lin-
ear, the spin-up and spin-down state will have different drift
velocities:

vd↑↓ = 2l2
B

h̄lV

√
V0(ε̃F ∓ �Z/2)

≈ vd

(
1 ∓ �Z

4(ε̃F )

)
= vd ∓ va, (A8)

where the approximate expression is valid when �Z � 2ε̃F ,
and the–,+ signs apply to the spin ↑ and ↓ states, respectively.
Thus, the Zeeman effect in combination with a nonlinear
confining potential results in a nonzero difference va between
vd↑, and vd↓. For the case when a term is present that lifts
graphene’s valley degeneracy, the same equation (A8) is ob-
tained if such a term also breaks time-reversal symmetry. In
this case, �Z should be replaced by �v , the strength of the
valley-splitting term.

APPENDIX B: FLAVOR-DEPENDENT DRIFT VELOCITY
DUE TO SPIN-DEPENDENT QH-SC TUNNELING

STRENGTH

Consider a chiral edge state in the lowest Landau level
propagating in the x direction. The low-energy BdG descrip-
tion of a spinful Landau level is

HQH = 1

2

∑
k

�
†
k (vd k11 − EF τzσ0)�k

= 1

2

∑
k

�
†
k hQH(�k) �k, (B1)

where vd is the drift velocity, �
†
k = (c†

k↑, c†
k↓, c−k↑, c−k↓) is

the BdG spinor, and τi and σi are Pauli matrices in Nambu
and spin space, respectively. We take the units where h̄ = 1.
Suppose we couple this system to an s-wave spin-singlet su-
perconductor described by

Hsc = 1

2

∑
k

�
†
k[ξkτzσ0 − �τyσy]�k

= 1

2

∑
k

�
†
k hsc(k) �k, (B2)

where � is the superconducting gap (assumed to
be real for simplicity), ξk = k2

2m − EF,s, and �
†
k =

(d†
k↑, d†

k↓, d−k↑, d−k↓). We will describe the coupling

between the two systems within the tunneling Hamiltonian
description with

HT = 1

2

∑
k

�
†
k(t0τzσ0)�k + H.c.

= 1

2

∑
k

�
†
k hT �k + H.c., (B3)

where t0 is the tunneling amplitude associated with electron
scattering from the quantum Hall sample to the supercon-
ductor and vice versa. The bare Green’s function for the
superconductor at T = 0 is

Gsc(k, ω) = (ω − hsc(k))−1 (B4)

= ω11 + ξkτzσ0 − �τyσy

ω2 − ξ 2
k − �2

. (B5)

The self-energy is given by

�(k, ω) =
∫

dq hT (q)Gsc(k + q, ω)hT (−q)

≈ −λ
ω11 + �τyσy√

�2 − ω2
, (B6)

where λ = −πt2
0 Nint(0) and Nint(0) is the interface DOS at

the Fermi energy. In the limit ω � � from the equation for
the poles of the dressed Green’s function,

Det(hQH(k) + �(k, ω) − ω) = 0, (B7)

we can obtain the effective Hamiltonian [24,58]:

Heff(k) = vd

1 + λ/�
k11 − EF

1 + λ/�
τzσ0 − �

1 + �/λ
τyσy.

(B8)

Now we will consider a perturbation to the tunneling
Hamiltonian. Consider the Hamiltonian for a vacuum edge
state with Zeeman splitting �Z :

H ′
QH = 1

2

∑
k

�
†
k

(
vd k11 − EF τzσ0 + �Z

2
τzσz

)
�k

= 1

2

∑
k

�
†
k h′

QH(k)�k . (B9)

Besides the Zeeman effect lifting the degeneracy of the Lan-
dau levels, the splitting also spatially separates spin-polarized
edge states with opposite spins [59]. This separation occurs
in the direction perpendicular to the boundary (y direction in
this case). Thus, in a QH/SC heterostructure in the LL, one
edge state moves closer to the interface and the other moves
further away. To account for this spatial shift, we consider the
modified tunneling Hamiltonian,

H ′
T = 1

2

∑
�k

�
†
k(t0τzσ0 + δt (�Z ) τzσz )�k + H.c., (B10)

where δt = δt (�Z ) is an odd function in �Z . Now we
proceed as before, where we solve for the interface self-
energy with the modified tunneling Hamiltonian. Doing this,
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FIG. 6. Drift velocity of edge states as a function of δt for EF =
�/2, λ = �/2, �Z = 0, and vd = 5 × 102a�.

we find

�′(k, ω) =
∫

dq h′
T (q)Gsc(k + q, ω)h′

T (−q) (B11)

≈ �(k, ω) − 2λ
δt

t0

(
ωτ0σz√
�2 − ω2

)
+ O((δt/t0)2).

(B12)

Then the energy eigenvalues describing the Andreev edge
states are determined by the BdG equationL

Det(h′
QH(k) + �′(ω) − ω) = 0. (B13)

Assuming the low-energy case ω � �, we have

Det

[
vd k11 − EF τzσ0 − λτyσy + �Z

2
τzσz

− τ0

(
σ0 + λ

�

(
1 + 2

δt

t0
σz

))
ω

]
≈ 0. (B14)

The matrix structure of the equation does not allow one to
easily extract an effective Hamiltonian description. The equa-
tions for the eigenenergies are also cumbersome, so we will
simply point out the primary effect of interest to us. The
electronlike dispersion will have the form

E±(k) = a0 + a1k ±
√

f (k), (B15)

where a0, a1 ∈ R are constants and f (k) is a second-order
polynomial in k. Then the velocities of these modes are

dE±
dk

= a1 ± 1

2
√

f (k)

df

dk
, (B16)

Figure 6 shows the drift velocities calculated directly using
Eqs. (B14)–(B16). For the physically relevant regime when
δt/t0 � 1, we see that va is quite small and grows linearly
with δt/t0.

APPENDIX C: TIGHT BINDING MODEL FOR
2DEG-SUPERCONDUCTOR JUNCTION

To estimate the properties of the CAES dispersion, for
ν = 2 we use the following tight-binding Bogoliubov–de

Gennes Hamiltonian:

HBdG =
∑

i

ψ
†
i (4t − μi )τzσ0ψi

+
∑
〈i j〉

ψ
†
i

(
−teiφi, j

τ0 + τz

2
+ te−iφi, j

τ0 − τz

2

)
σ0ψ j

+ �Z

2

∑
i

ψ
†
i τ0σzψi +

∑
i

ψ
†
i (−�iτx )ψi, (C1)

where ψi = (ci,↑, ci,↓, c†
i,↓, −c†

i,↑)T , c†
i,σ (ci,σ ) is the creation

(annihilation) operator for an electron at site i with spin σ ,
τi are 2 × 2 Pauli matrices in particle-hole space, μi and �i
are the chemical potential and superconducting gap at site
i, respectively, and φi, j is the Peierls phase introduced to
take into account the presence of the magnetic field in the
2DEG. We assume �i = �̃ in the SC and �i = 0 in the
2DEG. In the 2DEG, μi is set to a value μ = h̄ωc (between
the first and second Landau levels). We take the hopping
parameter t = 1.323 eV and lattice spacing a = 2.0 nm to
model a quadratic dispersion with effective mass m∗ = 0.1me.
We set �̃ = 1 meV and consider lead widths L(n)

x = 200 nm
and L(n)

x = 600 nm for the normal and superconductor leads,
respectively. In the SC, μi = μs, and, in general μs 	= μ. The
magnetic field is in the direction z, perpendicular to the xy
plane to which the 2DEG is confined: B = Bẑ. Using the
Landau gauge A = Bxêy (assuming translational invariance of
the leads in the y direction), the Peierls phase is given by the
expression

φi, j = −2πB

φ0

(yi + y j )(x j − xi )

2
, (C2)

where (xi, yi ) are the coordinates of the ith site and φ0 = h/e
is the quantum Hall magnetic flux quantum.

APPENDIX D: TIGHT BINDING MODEL FOR
GRAPHENE-SUPERCONDUCTOR JUNCTION

We consider a three-terminal graphene device with two QH
leads (lead 0 and 1) and a single SC lead. The tight-binding
Hamiltonian is given by

H = H0 + Hsc + HZ . (D1)

In graphene, each unit cell is formed by two carbon atoms,
A and B. Atoms A and B form two triangular lattices. Let Ai,
and Bi denote the positions of atoms A and B, and Si = Ai, Bi.
With this notation, we can write

H0 =
∑
〈SiS j〉

ψ
†
Si

(
−teiφSi ,S j

τ0 + τz

2

)
σ0ψS j

+
∑
〈SiS j〉

ψ
†
Si

(
te−iφSi ,S j

τ0 − τz

2

)
σ0ψS j

− μ
∑

Si

ψ
†
Si
τzσ0ψSi , (D2)

Hsc =
∑

Si

ψ
†
Si

(−�τyσy)ψSi , (D3)

HZ =
∑

Si

ψ
†
Si

(
�Z

2
τzσz

)
ψSi , (D4)

where ψSi = (cSi,↑, cSi,↓, c†
Si,↑, c†

Si,↓), c†
Si,σ

(c†
Si,σ

) is the cre-
ation (annihilation) operator for an electron with spin σ =↑,↓
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FIG. 7. Left: Parabolic fit (red dashed line) of ν = 0 CAF states
(black dots) for θ = π/4 generated from the GS tight binding model
using parameters used in Fig. 3 of the main text.

at site Si, t = 2.8 eV [27], τi and σi are Pauli matrices in
Nambu and spin space, respectively, μ is the chemical po-
tential with respect to the charge neutrality point and φSi,S j is
the Peierls phase. Using the same gauge as discussed in the
previous section, we have

φSi,S j = −2πB

φ0

(
Siy + S jy

)(
S jx − Six

)
2

, (D5)

where (Six , S jy ) are the coordinates of site Si. The magnetic
field used in our simulations is B = 200 T, which is artificially
large to compensate for a small scattering region, giving us a
magnetic flux comparable to experiment (�tot/�0 ≈ 345) and
to fix the ratio lB/ξsc = 0.175 and Lsc/ξ = 0.675.

We use this tight-binding model as the basis for the fit of
ν = 0 states in the CAF phase. In Fig. 7, we show the fit for
θ = π/4 used to generate Fig. 4 in the main text and confirm
that the nanowire model for the k0 = 0 case hosts Majorana
zero modes at the ends.

APPENDIX E: CALCULATION
OF TRANSPORT PROPERTIES

After implementing the tight-binding model via the Python
package KWANT [53], we obtain the local and nonlocal
conductances transmission probabilities T pe

j,0 = ∑Nmode
n tpe

j,0(n)
where tpe

j,0(n) is the probability of an incident electron from
the nth band of lead 0 to be scattered to lead j as an electron
or hole (p = e,h). The nonlocal downstream conductance is

GD =
Nmodes∑

n

(
T e-e

1,0 (n) − T h-e
1,0 (n)

)
(E1)

and the nonlocal Andreev conductance is

GAR =
Nmodes∑

n

(
T he

0,0(n) − T he
1,0(n)

)
. (E2)

The upstream and downstream resistances are calculated us-
ing a Landauer-Büttiker approach and found to be [21]

RU = RH

ν

(
2T h-e

1,0 + T h-e
0,1 + T e-e

0,1

2D

)
(E3)

RD = RH

ν

(
T e-e

1,0 − T h-e
1,0

2D

)
, (E4)

FIG. 8. (a), (b) Two distinct geometries of a NS junction where
the two-terminal conductance is expected to be the same for both
geometries in the ideal situation. (c) Schematic of the tight-binding
lattice at the NS interface.

where

D = T h-e
0,1 T e-e

1,0 + T ee
0,1T h-e

1,0 + T e-e
0,0

(
T h-e

1,1 + T h-e
0,1 + T e-e

0,1

)
+ T h-e

1,1

(
T h-e

0,0 + T h-e
1,0 + T e-e

1,0

)
. (E5)

APPENDIX F: ON THE PEIERLS SUBSTITUTION IN
QH-SC JUNCTION SIMULATIONS

Let us consider the two geometries shown in Figs. 8(a) and
8(b). The magnetic field can be accounted for on a lattice by
using the Peierls substitution on the hopping t in tight-binding
simulations:∑

〈i j〉
ψ

†
i (−t )ψi →

∑
〈i j〉

ψ
†
i (−teiφi, j )ψi, (F1)

where φi, j is the Peierls phase, Eq. (C2). The Peierls phase,
integrated around a plaquette, is the magnetic flux threading
the plaquette modulo φ0. We will assume that the S region is
in the Meissner phase and take �A = 0. First consider geometry
(a) and the flux threading the plaquettes along the NS interface
shown in Fig. 8(c). Using � = ∮

d �� · �A,

�1 = �2 = a2B, (F2)

�3 = �4 = a(y0 − a)B, (F3)

�5 = 0. (F4)

Note that �3, �4 depend on the coordinate system (i.e., y0).
Since � is an observable quantity, this cannot be the case.
The choice of y0 is made to smoothly and monotonically
take � → 0 across the NS interface. Then we must choose
y0 ∈ {a, 2a}. But the reason for the choice of y0 is even
more basic than this. From classic electrostatics, the boundary
conditions for the magnetic field imply the vector potential
must be continuous across any boundary. Then, since the NS
boundary lies between y ∈ {y0 − a, y0 − 2a}, we must have
y0 ∈ {a, 2a} to make �A continuous across the NS interface.

Turning to geometry (b), we can perform a similar analysis
and show that the continuity of �A along the NS interface
is generally violated. Hence, we may assume �A = 0 at all
S sites only if (i) the NS interface is perpendicular to the
translationally invariant normal leads and (ii) the coordinate
system is chosen such that �A in the normal region goes to zero
at the NS interface.

024518-8



SU(4) SYMMETRY BREAKING AND INDUCED … PHYSICAL REVIEW B 110, 024518 (2024)

[1] L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407
(2008).

[2] R. S. K. Mong, D. J. Clarke, J. Alicea, N. H. Lindner, P.
Fendley, C. Nayak, Y. Oreg, A. Stern, E. Berg, K. Shtengel,
and M. P. A. Fisher, Phys. Rev. X 4, 011036 (2014).

[3] F. Finocchiaro, F. Guinea, and P. San-Jose, Phys. Rev. Lett. 120,
116801 (2018).

[4] P. San-Jose, J. L. Lado, R. Aguado, F. Guinea, and J. Fernández-
Rossier, Phys. Rev. X 5, 041042 (2015).

[5] A. Y. Kitaev, Phys. Usp. 44, 131 (2001).
[6] D. J. Clarke, J. Alicea, and K. Shtengel, Nat. Commun. 4, 1348

(2013).
[7] P. Rickhaus, M. Weiss, L. Marot, and C. Schönenberger, Nano

Lett. 12, 1942 (2012).
[8] F. Amet, C. T. Ke, I. V. Borzenets, J. Wang, K. Watanabe, T.

Taniguchi, R. S. Deacon, M. Yamamoto, Y. Bomze, S. Tarucha,
and G. Finkelstein, Science 352, 966 (2016).

[9] L. Zhao, E. G. Arnault, A. Bondarev, A. Seredinski, T. F. Q.
Larson, A. W. Draelos, H. Li, K. Watanabe, T. Taniguchi, F.
Amet, H. U. Baranger, and G. Finkelstein, Nat. Phys. 16, 862
(2020).

[10] G.-H. Lee, K.-F. Huang, D. K. Efetov, D. S. Wei, S. Hart, T.
Taniguchi, K. Watanabe, A. Yacoby, and P. Kim, Nat. Phys. 13,
693 (2017).

[11] O. Gül, Y. Ronen, S. Y. Lee, H. Shapourian, J. Zauberman, Y. H.
Lee, K. Watanabe, T. Taniguchi, A. Vishwanath, A. Yacoby, and
P. Kim, Phys. Rev. X 12, 021057 (2022).

[12] M. Hatefipour, J. J. Cuozzo, J. Kanter, W. M. Strickland, C. R.
Allemang, T.-M. Lu, E. Rossi, and J. Shabani, Nano Lett. 22,
6173 (2022).

[13] L. Zhao, Z. Iftikhar, T. F. Q. Larson, E. G. Arnault, K.
Watanabe, T. Taniguchi, F. Amet, and G. Finkelstein, Phys. Rev.
Lett. 131, 176604 (2023).

[14] Y. Tang, C. Knapp, and J. Alicea, Phys. Rev. B 106, 245411
(2022).

[15] A. David, J. S. Meyer, and M. Houzet, Phys. Rev. B 107,
125416 (2023).

[16] V. D. Kurilovich, Z. M. Raines, and L. I. Glazman, Nat.
Commun. 14, 2237 (2023).

[17] A. B. Michelsen, P. Recher, B. Braunecker, and T. L. Schmidt,
Phys. Rev. Res. 5, 013066 (2023).

[18] V. D. Kurilovich and L. I. Glazman, Phys. Rev. X 13, 031027
(2023).

[19] A. L. R. Manesco, I. M. Flór, C.-X. Liu, and A. R. Akhmerov,
SciPost Phys. Core 5, 045 (2022).

[20] T. Sekera, C. Bruder, and R. P. Tiwari, Phys. Rev. B 98, 195418
(2018).

[21] M. Beconcini, M. Polini, and F. Taddei, Phys. Rev. B 97,
201403(R) (2018).

[22] Z. Hou, Y. Xing, A.-M. Guo, and Q.-F. Sun, Phys. Rev. B 94,
064516 (2016).

[23] S.-B. Zhang and B. Trauzettel, Phys. Rev. Lett. 122, 257701
(2019).

[24] Y. Alavirad, J. Lee, Z.-X. Lin, and J. D. Sau, Phys. Rev. B 98,
214504 (2018).

[25] N. Schiller, B. A. Katzir, A. Stern, E. Berg, N. H. Lindner, and
Y. Oreg, Phys. Rev. B 107, L161105 (2023).

[26] T. H. Galambos, F. Ronetti, B. Hetényi, D. Loss, and J.
Klinovaja, Phys. Rev. B 106, 075410 (2022).

[27] S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Rev. Mod.
Phys. 83, 407 (2011).

[28] M. O. Goerbig, Rev. Mod. Phys. 83, 1193 (2011).
[29] D. P. Arovas, A. Karlhede, and D. Lilliehöök, Phys. Rev. B 59,

13147 (1999).
[30] A. A. Burkov and A. H. MacDonald, Phys. Rev. B 66, 115320

(2002).
[31] Z. F. Ezawa and K. Hasebe, Phys. Rev. B 65, 075311

(2002).
[32] K. Nomura and A. H. MacDonald, Phys. Rev. Lett. 96, 256602

(2006).
[33] K. Yang, S. Das Sarma, and A. H. MacDonald, Phys. Rev. B 74,

075423 (2006).
[34] J. Jung and A. H. MacDonald, Phys. Rev. B 80, 235417

(2009).
[35] D. A. Abanin, B. E. Feldman, A. Yacoby, and B. I. Halperin,

Phys. Rev. B 88, 115407 (2013).
[36] A. F. Young, C. R. Dean, L. Wang, H. Ren, P. Cadden-

Zimansky, K. Watanabe, T. Taniguchi, J. Hone, K. L. Shepard,
and P. Kim, Nat. Phys. 8, 550 (2012).

[37] M. Kharitonov, Phys. Rev. B 85, 155439 (2012).
[38] A. F. Young, J. D. Sanchez-Yamagishi, B. Hunt, S. H. Choi, K.

Watanabe, T. Taniguchi, R. C. Ashoori, and P. Jarillo-Herrero,
Nature (London) 505, 528 (2014).

[39] S. Takei, A. Yacoby, B. I. Halperin, and Y. Tserkovnyak, Phys.
Rev. Lett. 116, 216801 (2016).

[40] D. S. Wei, T. van der Sar, S. H. Lee, K. Watanabe, T.
Taniguchi, B. I. Halperin, and A. Yacoby, Science 362, 229
(2018).

[41] P. Stepanov, S. Che, D. Shcherbakov, J. Yang, R. Chen, K.
Thilahar, G. Voigt, M. W. Bockrath, D. Smirnov, K. Watanabe,
T. Taniguchi, R. K. Lake, Y. Barlas, A. H. MacDonald, and
C. N. Lau, Nat. Phys. 14, 907 (2018).

[42] X. Liu, G. Farahi, C.-L. Chiu, Z. Papic, K. Watanabe, T.
Taniguchi, M. P. Zaletel, and A. Yazdani, Science 375, 321
(2022).

[43] A. Coissard, D. Wander, H. Vignaud, A. G. Grushin,
C. Repellin, K. Watanabe, T. Taniguchi, F. Gay, C. B.
Winkelmann, H. Courtois, H. Sellier, and B. Sacépé, Nature
(London) 605, 51 (2022).

[44] H. Zhou, C. Huang, N. Wei, T. Taniguchi, K. Watanabe, M. P.
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