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Flat-band systems are a promising platform for realizing exotic collective ground states with spontaneously
broken symmetry because the electron-electron interactions dominate over the kinetic energy. A collective
ground state of particular interest is the chased-after exciton condensate (EC). However, in flat-band systems
other collective ground states can compete with an EC phase, and the conventional treatment of the effect of
thermal and quantum fluctuations predicts the EC phase should be unstable. Here, using double-twisted bilayer
graphene (TBLG) heterostructures as an example, we show that, for realistic interaction strengths, the EC phase
is favored with respect to other TBLG’s phases—orbital magnetism and superconductivity—when the TBLGs
have opposite doping, and that the quantum metric of the Bloch wave functions stabilizes the EC, reversing
the conclusion that would be drawn from the conventional approach in which quantum metric contributions are
neglected. Our results suggest that the quantum metric plays a critical role in determining the stability of exciton
condensates in double layers formed by systems with flat bands.
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An exciton is a bosonic quasiparticle formed by an electron
(e) bound to a hole (h). A large number of excitons can
become phase coherent and form a collective state known as
the exciton condensate (EC) [1,2]. Already in the mid 1970’s
it was proposed [3,4] that spatially separating electrons and
holes should facilitate the formation of a thermodynamically
stable EC. Such a separation can be realized in e-h semicon-
ductor double layers, in which a thin dielectric separates the
layers and distinct metal gates are used to create an excess
density of electrons in one layer, which equals the excess
density of holes in the other one. Great advances in the fab-
rication of heterostructures made possible the realization of
several novel double layers in which ECs could be realized
[5–24]. It was proposed that ECs could be formed in graphene
double layers [5,6], but experimentally no strong signatures
have been observed so far. It was then proposed that ECs
could be realized in systems based on double bilayer graphene
(BLG) [8,9,16] given that, at low energies, BLG’s bands are
qualitatively flatter than graphene’s and recent experiments
show signatures that are consistent with the formation of an
EC [18]. These results, combined with the ones for quantum
Hall (QH) bilayers [25–30] in which the kinetic term of each
layer is completely quenched would suggest that, in general,
the formation of an EC is favored in bilayers formed by two-
dimensional (2D) systems with flat bands. As a consequence,
double twisted bilayer graphene (TBLG), in which the bands
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can be made extremely flat by tuning the twist angle θ be-
tween graphene sheets [31–38], appears to be an ideal system
to seek the realization of ECs without external magnetic fields.
This expectation, however, is, in part, naive. First, the flat-
ness of the bands is associated with strong screening of the
interlayer Coulomb interaction that is the driver of the EC in-
stability. This obstacle can be overcome by tuning the system
into the strong coupling regime, where the e-(h-)densities are
sufficiently small so that the coherence length ξ of the EC
is smaller than the average distance between particles [10].
Second, the stiffness (ρs) of the EC, i.e., its robustness against
thermal and quantum fluctuations, is conventionally expected
to decrease as the bands become flatter and ultimately vanish
in the limit of perfectly flat bands.

In this work we show that the second obstacle, in general,
might not be present if one considers the contribution to ρs due
to the quantum metric of the eigenstates of the EC. We con-
sider the specific case of double layers formed by an e-doped
TBLG and an h-doped TBLG separated by a thin insulating
barrier [Fig. 1(a)]. We first perform a mean-field calculation
in which the order parameters for the EC, superconductivity
(SC), and orbital magnetism (OM) are treated on equal footing
to identify the regions of the the phase diagram as a function
of dopings in the upper (U ) and lower (L) TBLG where the
EC is favored. We then calculate ρs for the EC and show that
the contribution to it due to the quantum metric is essential to
make it positive and therefore to stabilize the EC. In addition,
we describe how ρs depends on the twist angle and find that
the most favorable twist angle θ to realize a stable EC is not
the magic angle. We also obtain the Berezinskii-Kosterlitz-
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FIG. 1. (a) Proposed experimental setup. (b) Phase diagram of
double-TBLG as a function of μU and μL for θ = 1.00◦. (c,d) Phase
transitions as a function of dopings along the arrows shown in (b).
(e) Phase transition as a function of VEC at νU = νL = 0. The legend
SC(OM)U(L) represents the SC (OM) phase in the upper (lower)
TBLG.

Thouless (BKT) temperature TBKT [39,40] as a function of
θ . Considering that most systems with almost flat bands are
multiband systems, our results have universal relevance for
the understanding of the conditions necessary to realize ECs:
they show that to realize an EC in 2D bilayers the flatness of
the bands of the layers must be accompanied by a significant
quantum metric contribution to the EC’s stiffness. Our results
also allow to understand in a new light the conditions that
make possible the realization and observation of ECs in QH
bilayers [41,42].

The double TBLG system is described by the Hamilto-
nian Ĥ = ĤU + ĤL + Ĥint where ĤU/L is the single-particle
Hamiltonian for the U/L TBLG and Hint describes the e-e
interactions. We assume θ to be the same for the two
TBLGs. For small θ the low-energy states of a TBLG are
well described by an effective tight-binding Hamiltonian in
momentum space with the lattice sites {b = m1b1 + m2b2}
corresponding to the reciprocal lattice vectors of the moiré
lattice. The on-site Hamiltonians describe the Dirac points of
graphene with Fermi velocity vF = 106 m/s and the nearest-
neighbor hopping matrices Ti describe the coupling between
the layers with tunneling strength w = 118 meV [33,43–
45]. Here b1 = (

√
3Q, 0), b2 = (

√
3Q/2, 3Q/2), m1, m2 ∈

Z, Q = (8π/3a0) sin(θ/2) and a0 is the lattice constant of
graphene. Recent experimental and theoretical results sug-
gest that, for a single TBLG, the strongest instabilities are
orbital-magnetism (OM) characterized by a finite polarization
in sublattice space and superconductivity (SC) [46–48]. We
therefore decouple the interactions within the same TBLG
via the mean fields �OM,SC

blσ l ′σ ′ (l = l ′, σ = σ ′), where the indices
l, l ′ (σ, σ ′) correspond to the layer (sublattice) degrees of

freedom freedom within the U or L TBLG [43]. The inter-
action between electrons in different TBLGs is decoupled via
the EC mean field �EC

blσ l ′σ ′ . We assume the EC, SM, and OM
phases obey the spin-rotation symmetry. Given the flatness of
TBLG’s low-energy bands, in the mean-field approximation
all the interactions can be replaced by effective local inter-
actions [43]. We denote the strengths of the effective local
interaction in the OM, SC, and EC channels as VOM, VSC,
and VEC, respectively. We expect VOM > VSC ∼ VEC, but it is
challenging to estimate the precise values of the interaction
strengths because of the interplay of screening effects and col-
lective instabilities. Thus, we adopt a pragmatic approach: we
set VOM = 130 meV · nm2, and VSC = 75 meV · nm2 so that
the corresponding critical temperatures T OM

c and T SC
c are in

good agreement with the experimental observations [34,37],
and consider different range of values for VEC, 60–100 meV ·
nm2, for which T EC

c ∼ 1–4 K, and the system is in a strong
coupling regime where the screening does not prevent the
formation of the EC.

The gap equations for each order parameter (OP) �OP
ᾱ ,

where OP = {OM, SC, EC}, and ᾱ is a collective index, can
be linearized close to the critical temperature T OP

c : �OP
ᾱ =∑

β̄ χOP
ᾱβ̄

�OP
β̄

, where χOP
ᾱβ̄

is the bare susceptibility, indepen-

dent of �OP
ᾱ . T OP

c is obtained as the temperature T for which
the largest eigenvalue of χOP

ᾱβ̄
is equal to 1. The expressions

of χOP
ᾱβ̄

for each phase are given in [43]. In Fig. 1(b) we
show the phase diagram, as function of doping in each TBLG,
for VEC = 60 meV · nm2, obtained by identifying the highest
T OP

c . We verified for several (μU , μL ) value pairs that the
results obtained from the linearized and nonlinearized gap
equations are consistent. Close to νU = νL = 0 the correlated
insulating phase OM is favored, whereas introducing equal
electron densities in the two TBLGs μL ∼ μU favors the
SC phase [49]. When the excess density of electrons in one
TBLG equals the excess density of holes in the other TBLG,
μU ∼ −μL, the EC becomes dominant. In our system the EC
is formed by states in physically different TBLGs, no pairing
between states in bands with opposite Chern number is as-
sumed, and so the topology of the low-energy bands does not
penalize the formation of a uniform inter-TBLG EC state [50].

To investigate the possible coexistence of ordered phases
[51] we solved across several phase boundaries the full non-
linear gap equations in which all the order parameters are
allowed to be nonzero. We used large numbers of random
initial conditions and identified the solution with the small-
est total energy as the ground state. Figures 1(c) and 1(d)
show the evolution of the order parameters across the OM/EC
and SC/EC phase boundaries, respectively. In both cases the
results suggest that the system undergoes a first-order quan-
tum phase transition as the dopings are varied in Fig. 1(b).
Figure 1(e) shows the evolution of the order parameters as
a function of VEC at the neutrality point. Also in this case
the transition appears to be first order. Figure 1(e) suggests
that for VEC > 60 mev · nm2 the EC is favored in a significant
region of the (μU , μL ) plane. In the reminder we focus on
the μL = −μU ≡ μ regime, with μ sufficiently large, and set
VEC = 100 meV · nm2 so that, at the mean-field level, the EC
phase is dominant. To simplify the notation in the sections be-
low the EC label is implied.
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FIG. 2. (a) Tc as a function of μ = μL = −μU and different
values of twist angle θ . (b) Tc as a function of θ and different values
of μ.

Figure 2 shows how Tc scales with μ and θ close to the
magic angle θM = 1.05◦. Tc is largest when θ = θM , the twist
angle for which the bands are flattest, and decreases quickly
when θ is tuned away from θM . The solution of the gap equa-
tion reveals that �blσ l ′σ ′ has several nonzero components. We
performed the singular value decomposition (SVD) �blσ l ′σ ′ =
USV †, where S is a diagonal matrix whose diagonal elements
are the singular values of �blσ l ′σ ′ . Figure 3(a) shows that the
largest 20 singular values (in total we have 484 singular values
[43]) are of comparable size confirming the multicomponent
nature of the order parameter.

To better understand the orbital structure of �blσ l ′σ ′

we calculated its projections on the 4 × 4 matrices κi ⊗
σ j as mi j = [

∑
b ‖a(b)

i j ‖2]1/2, a(b)
i j = (1/4)Tr[�blσ l ′σ ′κi ⊗ σ j],

where κi (σi) are the Pauli matrices in the layer (sublattice)
space. We see, in Fig. 3(b), that m03 is the largest projec-
tion, but several other projections are comparable to it. The
fairly even distribution of the EC’s order parameter over dif-
ferent orbital channels is paralleled by its fairly slow decay
with |b|, see Fig. 3(c). These results are consistent with the
SVD’s result that �blσ l ′σ ′ describes a multicomponent order
parameter. This is in contrast with the results for the case of
superconducting pairing in isolated TBLG where the pairing
is dominated by a single channel and the magnitude of the
order parameter decreases quickly with |b| [48,52].

Figure 4 shows the low-energy bands along the γ − κ+ −
ν − γ − ν̄ path in the moiré Brillouin zone (BZ) [43] for θ =
1.05◦ and θ = 1.00◦ in the presence of the EC condensate.
For θ = 1.05◦ the very large Fermi velocity of the low-energy

FIG. 3. (a) The first 20 singular values of the SVD decom-
position �bl σ l ′σ ′ = USV †. (b) Amplitudes of the order parameter
components mi j . (c) Scaling with |b| of m03. Here θ = 1.05◦ and
μ = 0.30 meV.

FIG. 4. Band structures in the EC phase at T = 0 and μ =
0.30 meV for (a) θ = 1.05◦ and (b) θ = 1.00◦. The color bar indi-
cates how much the eigenstate is localized in the U/L TBLG. The
inset in (a) shows the moiré Brillouin zone.

bands at the γ point prevents the EC from opening a gap at
this point. As θ is tuned away from θM the singularity at the
γ point morphs into two very small e-h pockets, Fig. 4(b).
The results of Figs. 4(a) and 4(b) show that, in double layer
TBLG, the EC is expected to be, strictly speaking, gapless.
However, given that the gapless nature is due to a very small
number of states close to a single point of the BZ, the density
of states is very negligible within the EC’s gap (see [43]) and
so we expect that the transition to the EC state could be clearly
observed in transport and spectroscopy measurements.

We now consider the stability of the EC with respect to
fluctuations. The dominant fluctuations are the ones of the
phase ϕ(r) of the order parameter � → �eiϕ(r). Expanding
the action in the long-wavelength limit around the saddle
point identified by the mean-field solution we have S = S0 +∫

dτ
∫

dr 1
2ρs

αβ∂rα
ϕ∂rβ

ϕ, where S0 is the action at the saddle
point and ρs

αβ is the αβ component of the EC’s stiffness. The
EC is stable when ρs

αβ is positive-definite. For a multiband
system ρs

αβ is given by the general expression [53,54]

ρs
αβ =

∑
k,i, j

nF (Ej ) − nF (Ei )

Ei − Ej

(
1

4A
〈ψi|v̂α|ψ j〉〈ψ j |v̂β |ψi〉

− 1

A
〈ψi|v̂c f ,α|ψ j〉〈ψ j |v̂c f ,β |ψi〉

)
, (1)

where Ei (|ψi〉) are the eigenvalues (eigenstates) of the
mean-field Hamiltonian HMF, nF (E ) is the Fermi-Dirac dis-
tribution, A is the area of the sample, v̂α (k) = ∂HMF/∂kα

and v̂c f ,α (k) = (1/2)γz∂HMF/∂kα are the components of the
regular and counterflow velocity operators, respectively, γz is
the Pauli matrix acting in the U/L subspace, and k = (kx, ky )
is the Bloch wave vector. In our case, ρs

xy = ρs
yx = 0, and

ρs
xx = ρs

yy ≡ ρs. For a multiband system we can identify a con-
ventional contribution to ρs, ρs,conv, arising almost exclusively
from intraband terms (the same band index in the electron
or hole subspace), and a “geometric” contribution, ρs,geom,
due to interband terms (different band indexes in both the
electron and hole subspaces) and write ρs = ρs,conv + ρs,geom.

Because ρs,geom is closely connected to the quantum metric of
the Hilbert space spanned by the eigenstates of HMF [52–57],
it is often called a geometric contribution to the superfluid
stiffness.

Figure 5 shows how ρs,conv, ρs,geom, and ρs depend on μ

and θ . All the results were obtained for T = 20 mK  Tc.
We notice that ρs does not grow with μ contrary to the
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FIG. 5. (a) Conventional ρs,conv, (b) geometric ρs,geom, and (c) to-
tal stiffness ρs as a function of μ for different values of θ . (d) ρs

versus θ for different values of μ.

conventional result ρs ∝ μ. For θ = 1.05◦ and θ = 1.10◦,
ρs,conv and ρs,geom are comparable and the relative weight
changes with μ. For all the other twist angles considered
ρs,geom is larger than ρs,conv, regardless of μ.

The results of Fig. 2(a) show that the mean-field critical
temperature Tc at θ = 1.00◦ is only slightly smaller than at
θ = θM , and therefore that, at the mean-field level, double-
layer TBLG with θ = 1.00◦ is a very good candidate for the
realization of an EC. However, strikingly, for θ = 1.00◦ we
find that ρs,conv for the EC is negative for all the values of μ,
see Fig. 5(a) (this can happen because of the lack of particle-
hole symmetry). This result would lead us to conclude that for
θ = 1.00◦ the EC is fragile against fluctuations and therefore
not a stable ground state, despite the relatively large value
of Tc. This conclusion is reversed if one takes into account
the geometric contribution to ρs, Fig. 5(b): for θ = 1.00◦ the
ρs,geom is positive and much larger, in absolute value, than
ρs,conv, guaranteeing the robust stability of the EC. In fact,
Figs. 5(c) and 5(d) allow us to conclude that the EC is most
stable for θ = 1.00◦, not for θ = θM as one would infer from
the mean-field results.

The results of Figs. 5(c) and 5(d) can be used to obtain
TBKT via the equation kBTBKT = 2πρs[�(TBKT), TBKT], where
we took into account the valley and spin degeneracies. For
the dependence of � on T we can adopt the BCS scaling
�(T ) = 1.764kBTc(1 − T /Tc)1/2, with kB the Boltzmann’s
constant. The results for TBKT are shown in Fig. 6. From
Figs. 6(a) and 6(b) we see that, contrary to the mean-field
results, the twist angle for which the critical temperature
TBKT is largest is not θM , but θ = 1.00◦ for all the values
of μ. Indeed TBKT at θ = 1.00◦ is up to 50% larger than at
θM . This somewhat surprising result arises entirely from the
geometric contribution to ρs. It is interesting to notice that,
contrary to the conventional wisdom, for some twist angles,
TBKT decreases rather than increasing with μ. Such behavior is
particularly marked for θ = 1.00◦ and θ = θM , Fig. 6(a), due
to the significant decrease of the geometric contribution to ρs,

FIG. 6. (a) TBKT as a function of μ for different values of θ . (b)
TBKT as a function of θ for different values of μ. (c,d) TBKT/Tc as a
function of μ, θ , respectively.

as seen in Fig. 5. Figures 6(c) and 6(d) show how the ratio
TBKT/Tc scales with μ and θ , respectively. It is particularly
interesting to see that, for all values of μ, TBKT/Tc is minimum
at θM .

In summary, we studied the competition between OM, SC,
and EC phases as a function of the dopings of the layers
via comprehensive mean-field calculations in double TBLG
systems. We discussed the nature of the phase transitions,
and we showed that, for realistic interaction strengths, the
EC phase is favored when the TBLGs have sufficiently large
and opposite dopings. We then studied the stiffness ρs of the
EC and demonstrated that the quantum metric contribution
to ρs is essential to make ρs positive so that the EC is sta-
ble against fluctuations. A “conventional” study of the EC’s
stability that does not include interbands terms would lead
to the conclusion that in flat-band double layers ECs can be
unstable. However, we found that this conclusion is reversed
if the interband terms responsible for the quantum metric of
the flat bands are taken into account. Finally, we obtained
TBKT for the ECs and found that the largest TBKT is real-
ized not at the magic angle θ = 1.05◦, but at θ = 1.00◦. The
results present a comprehensive and detailed picture of the
possible correlated states of double-twisted bilayer graphene
and show the role played by the quantum metric on the sta-
bility and TBKT of the exciton condensate in double-twisted
bilayer graphene and so should constitute a useful guide to
experimentalists studying the correlated phases of these novel
systems. In a more general context, our findings point to the
importance of the quantum metric for the understanding of the
physics of ECs in flat-band systems, including QH and moiré
bilayers [58–60].
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I. MOMENTUM SPACE TIGHT-BINDING MODEL

For all the calculations of TBLG in this paper, we adopt
the model introduced by Bistrizer-MacDonald [1, 2], which
is an effective tight-binding model in momentum-space (see
Fig. S1). The Dirac points in each layer form a triangular
lattice with the reciprocal basis vectors

b1 = (
√

3Q, 0), (1)

and

b2 = (
√

3Q/2, 3Q/2). (2)

where Q = 8π sin(θ/2)/3a0, a0 is the lattice constant for
graphene and θ is the twist angle. The Dirac points in the two
layers are shifted relative to each other by β+ = (0, 0) and
β− = (0, Q), so that we end up with an effective honeycomb
lattice. The onsite block at each lattice site b, corresponding
to the K valley of the graphene sheets, is described by the
Hamiltonian

H
(t/b)
Kb (k) = e∓i

θ
4σz [~vF (k− κb±) · σ − µσ0]e±i

θ
4σz , (3)

where the first (second) sign is associated to the bottom (top),
i.e. b, (t), graphene sheet, σi are Pauli matrices in sublat-
tice A/B space, vF = 106 m/s is the Fermi velocity in
graphene, k is the electron wave vector (measured from K),
κb± = b + β±, and µ is the chemical potential. The matri-
ces Tj = w[τ0 + cos(2πj/3)τx + sin(2πj/3)τy] [1, 2], with
j = −1, 0, 1, describe tunneling processes between nearest
neighbors on the lattice sites built in momentum space, see
Fig. S1. HK′ is obtained from HK via time reversal. We
assume w = 118 meV [3, 4].

For the determination of the phase diagram and the stiff-
ness calculations, we use lattices with Nx = 11 and Ny =
11 primitive cells along the b1 and b2 directions, respec-
tively, resulting in 2NxNy = 242 momentum-space lattice
points. To solve the non-linear gap equations we consider the
momentum-space unit-cells with |b| ≤ 5|b1|, which corre-
sponds to 2 × 91 = 182 momentum-space lattice points. We
have verified that both sets of momentum-space lattice points
give the same results and that are sufficiently large that the re-
sults do not change if the number of momentum-space lattice
points is further increased.

FIG. S1. The Dirac points in each layer form a triangular lattice with
basis vectors b1 and b2. Because the momenta of the Dirac points
in the two layers are shifted by β+ = (0, 0) and β− = (0, Q),
we obtain a honeycomb lattice of Dirac points coupled by matrices
Tj describing the tunneling between the layers. Nx and Ny are the
number of primitive cells, along the b1, b2 direction, respectively,
forming the lattice.

II. JUSTIFICATION OF LOCAL-INTERACTION
APPROXIMATION

In this section we justify the local-interaction approxima-
tion that we have used to obtain the mean-field equations.
Let’s consider the exciton order parameter ∆(k) assuming
that the spin- and valley-rotation symmetries are satisfied, so
that we can neglect these degrees of freedom in our analysis.
Then the mean field Hamiltonian projected to the lowest en-
ergy bands of the two TBLGs (denoted U and L) is given by

HMF =
∑
k

c†k

(
ξ0(k) + ξz(k) ∆(k)

∆(k) ξ0(k)− ξz(k)

)
ck, (4)



2

where c†k = (c†U,k c
†
L,k), ξ0(k) ± ξz(k) are the normal state

dispersions in the U/L layers,

∆(k) =
∑
k′

V (k,k′)
∆(k′)

2
√
ξ2
z(k′) + ∆2(k′)[

nF
(
−
√
ξ2
z(k′) + ∆2(k′) + ξ0(k)

)
−nF

(√
ξ2
z(k′) + ∆2(k′) + ξ0(k)

)]
, (5)

and V (k,k′) describes the electron-electron interactions pro-
jected to the lowest bands. Close to the critical temperature
this gap equation can be linearized giving

∆(k) =
∑
k′

V (k,k′)
∆(k′)

2|ξz(k′)|

[
nF
(
− |ξz(k′)|+ ξ0(k)

)
−nF

(
|ξz(k′)|+ ξ0(k)

)]
. (6)

In general, the exciton order parameter is momentum-
dependent due to the dispersion of the bands. However, if we
assume that the dispersions of the bands are approximately flat
we can neglect the momentum-dependence of ∆(k). Then the
non-linear and linear gap equations take the forms

∆ = Veff
∆

2
√
ξ2
z + ∆2

[
nF
(
−
√
ξ2
z + ∆2 + ξ0

)
−nF

(√
ξ2
z + ∆2 + ξ0

)]
, (7)

and

∆ = Veff
∆

2|ξz|

[
nF
(
− |ξz|+ ξ0

)
− nF

(
|ξz|+ ξ0

)]
, (8)

respectively, where

Veff =
∑
k′

V (k,k′). (9)

This means that in both cases we can replace the interactions
with a momentum-independent effective interaction strength
Veff so that neither the critical temperature obtained from the
linearized gap equations, nor the order parameter obtained
from the full non-linear gap equations is affected by the de-
tailed momentum dependence of the interactions.

Following the analysis above, it can be shown that also to
calculate the superconducting and magnetic order parameters
the interaction is well approximated by an effective local inter-
action. In general, in systems with sufficiently flat bands, lo-
cal and long-range interactions will yield similar results. This
has been utilized in numerous works related to symmetry-
broken states in quantum Hall bilayers, see e.g. Ref. [5, 6],
where it was shown that the long-range Coulomb interactions
can be replaced by effective local interactions with interaction
strength Vc ∼ e2/(4πεε0lB), where lB is the magnetic length
describing the distance between the particles. Moreover, a

similar projection of the interactions to the flat bands has been
used to replace the momentum-dependent Coulomb repul-
sion, and the phonon-mediated attraction, with momentum-
independent effective interaction strengths in other flat-band
systems [7, 8].

Given that in TBLG the low energy bands are very flat the
local-interactions approximation is quite accurate. It might
be worth pointing out that our results, obtained using the
local-interactions approximation, are in agreement with the
mean-field results obtained in Ref. [9], where the long-range
Coulomb interactions were used. Our results are also qualita-
tively consistent with the experimentally observed doping de-
pendence of the competition of the superconducting and cor-
related insulating phases. One situation when, for TBLG, the
local-interaction approximation would not be valid is the case
when the translational symmetry of the moiré superlattice is
spontaneously broken due to a finite momentum pairing, or
charge density wave, or spin density wave order. In these
cases, the comparison of the energies of the candidate ground
states would require us to take into account the momentum-
dependence of the interactions. However, to our knowledge,
there is no evidence of spontaneously broken translational
symmetry of the moiré superlattice in TBLGs so far, and that
is not a situation that we consider in the current work. In
quantum Hall exciton condensates, it is known that the order
parameters can spontaneously break the translational symme-
try if the distance between the layers is larger than the dis-
tance between the particles within the layer [10]. In our case,
the distance between the layers can be just few atomic con-
stants because the insulating layer can be made out of h-BN
or WSe2 having a very large insulating gap. Therefore, we do
not expect that phases with spontaneously broken translational
symmetry will appear in our system.

III. PHASE DIAGRAM FOR AN IDEAL FLAT-BAND
MODEL

To get insights into the form of the phase diagram we can
assume the bands to be completely flat. This is a rough ap-
proximation, but it is sufficient to identify the main qualitative
features of the phase diagram. Almost flat bands can not only
be obtained in systems formed by two two-dimensional crys-
tal stacked with a relative twist, but can also be realized in
optical lattices [11]. In the limit in which the bands are com-
pletely flat the non-interacting Hamiltonian can be written as

Hflat = −µU
∑
ks

c†ksUcksU − µL
∑
ks

c†ksLcksL, (10)

where s represents a spin or orbital degree of freedom.
As discussed in the main text: (i) close to half-filling

µU = µL = 0 we expect an intralayer correlated state, (ii)
for µU = µL and |µU | sufficiently large we expect a super-
conducting state, (iii) for µU = −µL, and |µU | sufficiently
large, we expect an exciton condensate state [Fig. 1(b) in the
main text]. In this section we show that this expectation can be
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FIG. S2. Phase diagram of a double layer system with ideal flat
bands, here Ṽ0: effective interaction strength for the correlated in-
sulator states.

confirmed with a simple analysis based on the structure of the
gap equations resembling the approach used in Ref. [12]. We
describe the gap equations for each type of symmetry-broken
state separately, and then use them to study the competition
between the phases.

The gap equation for s−wave superconductivity in each
layer is (we can assume that superconducting pairing in each
layer occurs independently)

∆SC,T =
VSC

2

∆SC,T√
µ2
T + ∆2

SC,T

[
nF
(
−
√

∆2
SC,T + µ2

T

)
− nF

(√
∆2

SC,T + µ2
T

)]
=
VSC

2

∆SC,T√
µ2
T + ∆2

SC,T

tanh(β
√

∆2
SC,T + µ2

T /2),

(11)

where nF (E) is the Fermi function, VSC is the effective inter-
action strength for superconductivity obtained by projecting
the true interactions into the eigenstates of the flat-band sys-
tem, µT (T = U,L) is the chemical potential in each layer,
∆SC,T is the superconducting order parameter in each layer,
β = 1/(kBT0) and T0 is the temperature. The critical tem-
perature TSC,T,c for the superconducting state is given by

kBTSC,T,c =
µT

2 arctanh
(
2µT /VSC

) . (12)

The largest critical temperature kBTSC,T,c = VSC/4 is ob-
tained for µT = 0.

For an intralayer symmetry-broken state (say for mag-
netism) the gap equation is

mT =
Ṽ0

2

[
nF (−mT − µT )− nF (mT − µT )

]
=
Ṽ0

2

sinhβmT

coshβµT + coshβmT
, (13)

where Ṽ0 is the effective interaction strength for intralayer
interactions and mT is the order parameter of the intralayer
symmetry-broken state. The critical temperature of the in-
tralayer correlated state is determined by the equation

kBT0,T,c

[
cosh(µT /kBT0,T,c) + 1

]
=
Ṽ0

2
. (14)

The largest critical temperature kBT0,T,c = Ṽ0/4 is obtained
for µT = 0.

For an exciton condensate state the gap equation is

∆EC =
VEC

2

∆EC√
µ2
as + ∆2

EC

[
nF

(
−
√

∆2
EC + µ2

as − µs
)

− nF
(√

∆2
EC + µ2

as − µs
)]

=
VEC

2

∆EC√
µ2
as + ∆2

EC

×
sinh

(
β
√
µ2
as + ∆2

EC

)
coshβµs + cosh

(
β
√
µ2
as + ∆2

EC

) , (15)

where VEC is the effective interaction strength for exciton con-
densation, µs = (µU +µL)/2 and µas = (µU −µL)/2. If we
have balanced electron and hole densities µU = −µL the gap
equation for the exciton condensation has the same form as in
the case of superconductivity. If the layers have equal densi-
ties of similar type of carriers µU = µL the gap equation for
the exciton condensation takes the same form as in the case
of intralayer correlated state. The critical temperature for the
exciton condensation is determined by the equation

sinh
(
µas/kBTEC,c

)
cosh(µs/kBTEC,c) + cosh

(
µas/kBTEC,c

) =
2µas
VEC

. (16)

If µs = 0 we obtain

kBTEC,c =
µas

2 arctanh(2µas/VEC)
(17)

resembling the equation for critical temperature of supercon-
ductivity but with chemical potential replaced by the layer
asymmetric chemical potential µas = (µU − µL)/2. If
µas = 0 we obtain

kBTEC,c

[
cosh(µs/kBTEC,c) + 1

]
=
VEC

2
(18)

resembling the equation for critical temperature of intralayer
correlated state but with chemical potential replaced by the
layer symmetric chemical potential µs = (µU + µL)/2. The
largest critical temperature kBTEC,c = VEC/4 is obtained for
µU = µL = 0.

To describe the competition between different phases as
a function of µU and µL we use the following procedure:
For each µU and µL we solve the critical temperatures for
the superconductivity from Eq. (12) (taking the larger value
from TSC,U,c and TSC,L,c), intralayer correlated states from
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Eq. (14) (taking the larger value from T0,U,c and T0,L,c) and
exciton condensation from Eq. (16). We assume that the phase
which is realized at each µU and µL is the the one with the
largest critical temperature.

We assume that the interaction constants satisfy the real-
istic hierarchy Ṽ0 > VEC ∼ VSC. Knowing that supercon-
ductivity can be easily realized in twisted bilayer graphene
we can expect VSC to be not much smaller than Ṽ0. As an
example, Fig. S2 shows the phase diagram obtained assuming
Ṽ0 = 162meV, VEC = 0.8Ṽ0 and VSC = 0.6Ṽ0. We see that in
this case, as expected, we obtain the phase diagram discussed
at the beginning of this section. We emphasize that the overall
structure of this phase diagram is a universal consequence of
the structure of the gap equations, and arises independently of
the details of the microscopic model.

IV. THE DETERMINATION OF THE PHASE DIAGRAM
FROM THE LINEARIZED GAP EQUATIONS

In this section, we describe the approach used to obtain the
phase diagram using the linearized gap equations obtained us-
ing the full TBLG bands, and provide the full expression of
such equations. As in the main text, we consider three differ-
ent phases: exciton condensate (EC), superconductivity (SC),
and orbital magnetism (OM).

To obtain the phase diagram, for each pair of values in the
(µU , µL) plane we calculate the transition temperature (Tc)
for each phase, and then identify the phase of the ground
state as the one with the largest Tc. As we discussed in the
next section, we have verified for several sample points in the
(µU , µL) plane that the phase with the largest Tc is the ground
state phase (i.e. the phase at zero temperature) by solving the
full non-linear gap equation, allowing also for the possibility
of coexistence of different phases.

For the EC phase the linearized gap equation takes the form:

∆EC
b1l1σ1l′1σ

′
1

=
∑

b2l2σ2l′2σ
′
2

χ
l1σ1l

′
1σ

′
1;l2σ2l

′
2σ

′
2

b1b2
∆EC

b2l2σ2l′2σ
′
2
,

(19)
where

χ
l1σ1l

′
1σ

′
1;l2σ2l

′
2σ

′
2

b1b2
=
VEC

A
∑
n1n2

bb′q

nF [ξn2L
(q)]− nF [ξn1U

(q)]

ξn1U
(q)− ξn2L

(q)

un1b1+bl1σ1U (q)u∗n2bl′1σ
′
1L

(q)

u∗n1b′+b2l2σ2U (q)un2b′l′2σ
′
2L

(q), (20)

is the pairing susceptibility, VEC is the interaction strength
for the EC phase, A is the area of the sample, unblσT (q)
is the component of the non-interacting wave function for a
single upper (T = U ) or lower (T = L) TBLG with recip-
rocal basis vector b, layer l, sublattice σ, and band index n.
Here ξU,L(q) = εq−µU,L, with εq the non-interacting energy
eigenvalue.

For the superconducting case, we assume the pairing to be
s−wave, and sublattice independent so that for each TBLG

we have the linearized gap equation [2]:

∆SC
bl =

∑
b′l′

χSC
bl,b′l′∆

SC
b′l′ , (21)

with

χSC
bl,b′l =

VSC

2A
∑
nmq

1− nF (ξnq)− nF (ξmq)

ξnq + ξmq

[〈unq|umq〉bl]∗〈unq|umq〉b′l′ , (22)

where the 2 in front ofA is due to the summation over sublat-
tices in the 〈〉 expression, and n,m are band indexes [2].

Previous work [9] strongly suggests that the orbital mag-
netic phase energetically most favored has order parameter
∆OM = 〈ΨGS |σ̂z|ΨGS〉where |ΨGS〉 is the ground-state and
σ̂z is the z Pauli matrix in sublattice space. For such order pa-
rameter we obtain the following linearized-gap equation

∆OM
bl =

∑
b′l′

χOM
bl,b′l′∆

OM
b′l′ , (23)

with

χOM
bl,b′l =

VOM

A
∑
nmq

nF (ξnq)− nF (ξmq)

ξmq − ξnq
[〈unqA|σ̂z|umqA〉bl]∗〈unqA|σ̂z|umqA〉b′l′ . (24)

The factor 2 in front of A on the r.h.s. of Eq. (24) is cancelled
by the factor 2 in front of VOM due to the spin degeneracy.

To obtain the linear response functions we use 60 × 60 k-
points to calculate the sum in momentum space. We have ver-
ified that further increasing the number of k-ponts does not
affect the phase diagram.

1 2 3 4
0

1

2

3

4

T
c 

(K
)

1.00°, =0.30meV

1.05°, =0.20meV

FIG. S3. Tc for the EC phase as a function of the magnitude of the
largest b vectors kept in solving the linearized gap equation. The
numbers of b vectors are respectively 7, 19, 37, 61 with |bm/b1|
increased from 1 to 4.

The number of b vectors necessary to obtain accurate esti-
mates of Tc depends on the order parameter considered. For
superconductivity it is sufficient to keep all the b vectors with
magnitude no larger than 2|b1|, which corresponds to 19 b
vectors [2].

For the EC order parameters we find that one needs to keep
all the b vectors with |b| ≤ 3|b1|, i.e. a total of 37 b vec-
tors. This is shown in Fig. S3, and is consistent with the fact
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that the EC phase is characterized by a multi-component or-
der parameter requiring more momentum states to accurately
describe it. Similar arguments and results apply to the OM
phase. Consequently, all the results presented in the main text,
and in the remainder, were obtained by keeping all the b with
|b| ≤ 4|b1| resulting in a total of 61 b vectors.
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-2 -1 0 1 2
(a)
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0.22

0.38

EC

SC

OM
-2 -1 0 1 2

(b)

FIG. S4. Effect of VEC on the phase diagram. For both panels:
θ = 1.00◦, VSC = 75 meV·nm2, and VOM = 130 meV·nm2, the
same values used for Fig. 1 (b) in the main text. However for (a)
VEC = 80 meV·nm2, and for (b) VEC = 100 meV·nm2, whereas in
Fig. 1 (b) in the main text VEC = 60 meV·nm2.
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U
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FIG. S5. (a) Tc as a function of µL for µU = −0.3 meV, the value
used for Fig. 1(c) in the main text. (b) Tc as a function of µU for
µL = 0.46 meV, the value used for Fig. 1(d) in the main text. For
both plots: θ = 1.00◦, VEC = 60 meV·nm2, VSC = 75 meV·nm2,
and VOM = 130 meV·nm2.

Figure 1 (b) in the main text, and Fig. S4 show the phase
diagrams obtained using the linearized gap equations with
the full TBLG bands, as described above. We see that the
phase diagrams obtained using the TBLGs’ bands, and re-
alistic values of the interaction strengths exhibit some qual-
itative differences compared to the phase diagram shown in
Fig. S2 obtained using the ideal flat-band model. Figure S4 (a)
shows that when VEC = 80 meV·nm2 the region where the
EC dominates is almost two thirds of the total area of the
(µL, µU ) plane considered, area that corresponds to filling
factors ranging from -2.5 to +2.5 for the moiré supercell.
When VEC = 100 meV·nm2, the EC phase completely pre-
vails over the other two phases.

Figure S5 shows the evolution of Tc for the different phases
as a function of doping in one TBLG while the doping in the
other TBLG is kept fixed. We see that the SC phase has a finite
Tc for all the doping considered, whereas for the EC and OM
phase there are range of dopings for which Tc vanishes.

V. STUDY OF PHASE TRANSITIONS USING THE
NON-LINEAR GAP EQUATIONS

To investigate the possibility that different order might co-
exist at low temperature it is necessary to obtain the solution
of the full non-linear gap equations in which all the order pa-
rameters are present and treated on the same footing.

The general form of the mean-field Hamiltonian with all the
three phases (EC, SC, OM) allowed is:

H =
∑
k

ψ†k[h0(k)) + h1(k)]ψk, (25)

where

ψk = (φK+kU↑, φK+kL↑, φ
†
−K−kU↓, φ

†
−K−kL↓)

T , (26)

with

φk = (ck+b1bA, ck+b1bB , ck+b1tA, ck+b1tB ,

ck+b2bA, ck+b2bB , ck+b2tA, ck+b2tB ,

ck+b3bA, ck+b3bB , ck+b3tA, ck+b3tB , ...), (27)

and

φ−k = (c−k−b1bA, c−k−b1bB , c−k−b1tA, c−k−b1tB ,

c−k−b2bA, c−k−b2bB , c−k−b2tA, c−k−b2tB ,

c−k−b3bA, c−k−b3bB , c−k−b3tA, c−k−b3tB , ...),

(28)

where ↑, ↓ is the spin index, and h0(k) is the matrix describing
the kinetic energy. To simplify the notation in the remainder
we do the following renaming k + K → k, −k −K → −k
in all c and c† operators. The kernel h1(k) has the form:

h1(k) =


∆U

OM(k) ∆EC(k) ∆U
SC(k) 0

∆†EC(k) ∆L
OM(k) 0 ∆L

SC(k)

∆U†
SC(k) 0 −∆U

OM(k) −∆EC(k)

0 ∆L†
SC(k) −∆†EC(k) −∆L

OM(k)

 .

(29)
In Eq. (29) ∆EC is the order parameter for the EC phase, ∆U

OM

(∆L
OM) is the order parameter for the OM phase in the upper

(lower) TBLG, and ∆U
SC (∆L

SC) is the order parameter for the
SC phase in the upper (lower) TBLG.

We assume the EC order parameter to be periodic on the
moiré lattice with the Fourier expansion

∆EC
rlσl′σ′ =

∑
b

∆EC
blσl′σ′eib·r, (30)

where

∆EC
blσl′σ′ = −VEC

A
∑
k1b2

〈c†Lk1+b2l′σ′cUk1+b2+blσ〉. (31)
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Via a unitary transformation U into the bands eigenstates,

cUk1+b1lσ =
∑
n

U lσUnk1+b1
cnk1

, (32)

c†Lk1+b1lσ
=
∑
n

U lσ∗Lnk1+b1
c†nk1

, (33)

we obtain

∆EC
blσl′σ′ = −VEC

A
∑
k1b2m

U l
′σ′∗
Lmk1+b2

U lσUmk1+b2+bnF (Emk1
),

(34)
where Emk are the eigenvalues of the full Hamiltonian
Eq.(25). We have checked that this equation is equivalent to
the linearized gap Eq.(19) in the small order parameter limit.

For the SC order parameter we have

∆SC
rlσ =

∑
b

∆SC
blσe

ib·r. (35)

Assuming the SC order parameter is sub-lattice independent,
i.e. ∆SC

blA = ∆SC
blB ≡ ∆SC

bl we obtain

∆SC
bl = −VSC

2A
∑
k1b1σ

〈c−(k1+b1)lσ↓ck1+b1+blσ↑〉. (36)

By going into the basis that diagonalizes the full Hamilto-
nian we have

ck1+b1+blσ↑ =
∑
n

U lσnk1+b1+b↑cnk1
, (37)

c−(k1+b1)lσ↓ =
∑
n

U lσ∗n−(k1+b1)↓c
†
nk1

, (38)

and

∆SC
bl = −VSC

2A
∑

k1b1mσ

U lσ∗m−(k1+b1)↓U
lσ
mk1+b1+b↑nF (Emk1

).

(39)
For the OM order parameter we have:

∆OM
bl =

VOM

A
∑
k1b1σ

〈c†k1+b1lσ
σ̂zck1+b1+blσ〉0, (40)

where 〈〉0 means the expectation value excluding the contri-
bution from the non-interacting ground states. Going into the
basis that diagonalizes the full Hamiltonian we obtain:

∆OM
bl =

VOM

A
∑
k1b1m

[(U∗mk+b1lAUmk+b1+blA

−U∗mk+b1lBUmk+b1+blB)nF (Emk)

−(U0∗
mk+b1lAU

0
mk+b1+blA

−U0∗
mk+b1lBU

0
mk+b1+blB)nF (ξ0

mk)], (41)

where ξ0 are the eigenvalues of the non-interacting Hamilto-
nian matrix h0 and U0 is the unitary transformation that diag-
onalizes h0.

To study the phase transitions along the paths used for
Fig.1(c)-(e) in the main text, for each point on such a path,
we solve iteratively the non-linear gap equations starting from
30 different, randomly generated, initial states including states
for which all the three order parameters are simultaneously
non-zero, and states in which only two, or one, order parame-
ters are not zero. In order to guarantee that the calculation is
fully unconstrained, for each point on the path, we use differ-
ent seeds to generate the random initial conditions. We stop
the iterative process when, for each component of the order
parameters, the difference of the values between two succes-
sive iterations is smaller than 5 × 10−4 meV. Among all the
solutions obtained from the initial random states, the ground
state is identified as the solution for which the total energy per
unit cell close to zero temperature

Etot =
1

N

∑
nk

EnknF (Enk) +
∑

blσl′σ′s

|∆EC
blσl′σ′ |2A0

VEC

+
∑
Tblσ

|∆SC
blT |2A0

VSC
+
∑
Tbls

|∆OM
blT |2A0

2VOM
, (42)

is the lowest (T = (U,L) and s is the spin index).
In solving the non-linear gap equation we mesh the Bril-

louin zone to 2× (30× 30), which is a compromise between
speed and precision, with one half of those k-points centering
at the origin, and the other half avoiding the high symmetric
points in a way similar to the Monkhorst-Pack k-point set [13].
We have verified that further increasing the sample size or the
number of k-meshes only leads to minor changes in the mag-
nitudes of the order parameters.

VI. NEARLY GAPPED FEATURE OF THE EXCITON
CONDENSATE STATE

(a) (b)

FIG. S6. The density of states without and with exciton condensates.
Here the parameters are (a)θ = 1.05◦, (b) θ = 1.00◦. In both plots
µ = 0.30 meV.

From the density of states shown in Fig. S6, we can see that
although the exciton condensate is a gapless state according to
the band structure shown in the main text, the density of states
close to the Fermi energy is reduced by more than an order
of magnitude in comparison to the normal state. Therefore, in
an experiment probing the density of states the transition from
normal state to the exciton condensate state would show up as
opening of a gap-like feature in the quasiparticle spectrum.
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FIG. S7. Here the parameters are θ = 1.00◦, and µ = 0.30 meV.

VII. DEPENDENCE OF SUPERFLUID DENSITY ON THE
NUMBER OF BANDS INCLUDED IN THE CALCULATION

Because the geometric part in the superfluid density is
purely a multiband effect its value can strongly depend on the
number of bands included in the calculation. In Fig. S7, one
can see that for θ = 1.00◦ and µ = 0.30meV the conven-
tional part of the superfluid density is almost independent of
the number of bands included, in contrast to the geometric
part. To get accurate results for the geometric part approxi-
mately 10 bands need to be included. We have used 10 bands
in all the superfluid density calculations reported in the main
text.
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