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Van Der Waals Heterostructures with Spin-Orbit Coupling

Enrico Rossi* and Christopher Triola

Herein, recent work on van der Waals (vdW) systems in which at least one of
the components has strong spin-orbit coupling is reviewed, focussing on a
selection of vdW heterostructures to exemplify the type of interesting
electronic properties that can arise in these systems. First a general effective
model to describe the low energy electronic degrees of freedom in these
systems is presented. The model is then applied to study the case of (vdW)
systems formed by a graphene sheet and a topological insulator. The
electronic transport properties of such systems are discussed and it is shown
how they exhibit much stronger spin-dependent transport effects than
isolated topological insulators. Then, vdW systems are considered in which
the layer with strong spin-orbit coupling is a monolayer transition metal
dichalcogenide (TMD) and graphene-TMD systems are briefly discussed. In
the second part of the article, a case is discussed in which the vdW system
includes a superconducting layer in addition to the layer with strong spin-orbit
coupling. It is shown in detail how these systems can be designed to realize
odd-frequency superconducting pair correlations. Finally, twisted
graphene-NbSe2 bilayer systems are discussed as an example in which the
strength of the proximity-induced superconducting pairing in the normal
layer, and its Ising character, can be tuned via the relative twist angle between
the two layers forming the heterostructure.

1. Introduction

Van der Waals (vdW) heterostructures[1–4] represent a growing
class of systems which are formed from 2D layers of mate-
rial held to one another by only van der Waals forces. One of
the most common vdW heterostructures, graphite, is composed
entirely of layered sheets of graphene,[5–7] a one-atom thick 2D
crystal of carbon atoms arranged in a honeycomb structure. The
nature of the vdW force implies that in a vdW system the stack-
ing configuration of the layers is not dictated by chemistry but,
to a great extent, can be tuned arbitrarily in an almost continu-
ous way. The explosion of interest in vdW systems stems from
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the fact that this is now experimentally
feasible. Experimentalists are able to iso-
late layers of different materials only one-
atom, or few-atoms, thick, and to com-
bine such layers with increasing control
of the stacking configuration. A striking
example of this tunability is the recent
experimental realization of vdW systems
formed by two graphene layers in which
the stacking angle, twist angle, can be ad-
justed to within a fraction of a degree.[8–10]

These experiments[8–10] have shown that,
by tuning the relative twist angle between
graphene layers, the system can become
superconducting or insulating. These re-
markable results are just one example of
the ways in which vdW heterostructures
can be used to realize electronic systems
with exotic and desirable properties.
Of particular interest are the recent de-

velopments involving vdW systems com-
prised of two layers in which one of
the layers has a strong spin-orbit cou-
pling (SOC). The main interest in these
systems arises from the possibility of
realizing novel electronic systems by

combining such a layer with a different layer which possesses
little or no SOC but with other interesting properties. For exam-
ple, graphene possesses only very weak SOC but has very high
electron mobility at room temperature. By combining graphene
with the 2D surface of a 3D topological insulator (TI),[11–13] the
SOC in the graphene layer can be enhanced by an order of
magnitude.[14,15] Additionally, as we discuss in Section 5.1, vdW
heterostructures with SOC appear to be ideal systems for realiz-
ing unconventional odd-frequency superconducting states.[16] In
contrast to conventional superconducting states, the defining fea-
ture of odd-frequency superconductors is that they host Cooper
pairs which are odd functions in the relative time, making these
states intrinsically dynamical.
The literature on vdW systems is by now very large, for this

reason we restrict ourselves to a particular subset of vdW systems
that are among the most relevant to the subject of this special is-
sue and that we have studied over the past few years. We first
present, in Section 2, the model to describe vdW systems with
SOC. To exemplify the application of this general formalism, in
Section 3, we discuss the case of vdW heterostructures formed by
graphene and a TI. In Section 4, we discuss recent progress on
vdW systems which include both graphene and a layer of transi-
tionmetal dichalcogenide (TMD).We then consider, in Section 5,
the case inwhich one of the layers is a superconductor, discussing
the possibility of realizing different exotic superconducting states
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in vdW systems with SOC. In Section 6 we present our conclu-
sion and outlook for future developments.
While the focus of this article is primarily on vdW systems

composed of graphene, topological insulators, and TMDs, we
note that much progress has also been made studying vdW
systems with other components. Notably, we do not discuss
the recently discovered 2D magnetic materials,[17–19] which in-
clude: FePS3,

[20] Cr2GeTe6,
[21] CrI3,

[22,23] VSe2,
[24] MnSex,

[25] and
Fe3GeTe2.

[26,27] Similarly, we do not cover the magnetic prox-
imity effect[28] which has been discussed in a variety of vdW
heterostructures.[29–31] We also omit discussion of the intrigu-
ing heterostructures which can be made using monolayers
with buckled honeycomb structure –silicene,[32] germanene,[33,34]

and stanene[35]–systems involving nanoribbons,[36] and struc-
tures formed by different layers of TMDs[37] and twisted TMD
homobilayers.[38–41]

2. Model

The Hamiltonian describing a generic double-layer vdW sys-
tem can be written as H = H1 +H2 +Ht, where H𝓁 (𝓁 = 1, 2)
is the Hamiltonian associated with layer 𝓁 andHt describes tun-
neling processes between the two layers. Here, we write H1 =∑

k𝛼𝛼′ c
†
k𝛼h(k)1;𝛼𝛼′ck𝛼′ , H2 =

∑
k𝛼𝛼′ d

†
k𝛼h(k)2;𝛼𝛼′dk𝛼′ , where c†k𝛼 and

d†k𝛼 (ck𝛼 and dk𝛼) create (annihilate) single electron states in layers
1 and 2, respectively, with momentum k and all other degrees of
freedom described by the composite index 𝛼, including spin, or-
bital, and particle-hole degrees of freedom. We assume that the
tunneling between the two layers depends only on the difference
between the positions, r1, r2, of the electrons in the two layers.
As a consequence, the crystal momentum is conserved during
tunneling processes and we have

Ht =
∑
k1k2

∑
G1G2

∑
𝛼1𝛼2

∑
s1s2

t𝛼1𝛼2 (k1 +G1)e
iG2⋅𝝉s2−iG1⋅𝝉s1

× c†k1𝛼1dk2+(G2−G1)𝛼2 + h.c. (1)

where G𝓁 is the reciprocal lattice vector in layer 𝓁 and we have
allowed for the possibility that the lattices making-up each of the
two layersmay possess basis vectors 𝝉 s𝓁 . For example, for the case
of graphene we have two basis vectors 𝝉 s, which we can write as
𝝉 s = {(0, 0); (a0, 0)}, where a0 is the carbon–carbon distance.
In a bilayer vdW system, two very different kinds of stack-

ing are possible: commensurate stacking, and incommensurate
stacking. In the first case, the vdWbilayer has a periodic structure
in real space with a large primitive cell that is commensurate with
the primitive cells of both layers. In the incommensurate case, no
such periodicity exists in real space. For the commensurate case
we obtain a well defined Moiré pattern.
Given two layers (𝓁 = 1, 2) with primitive lattice vectors a𝓁i (i =

1, 2), in order for a stacking to be commensurate there must exist
four integers m1, m2, n1, n2 such that:

m1a11 +m2a12 = n1a21 + n2a22 (2)

Without loss of generality, using complex numbers to repre-
sent 2D vectors, we can write a11 = a10e

−i𝜃1 , a12 = a10e
+i𝜃1 , a21 =
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a20e
−i(𝜃2−𝜃), a22 = a20e

+i(𝜃2+𝜃), where a𝓁0 is the lattice constant of
layer 𝓁, 2𝜃𝓁 is the angle between the primitive lattice vectors of
layer 𝓁, and 𝜃 is the twist angle between the two layers. Using
this notation, considering that the magnitudes of the two vectors
on the left and right hand side of Equation (2) have to be same
we obtain the following Diophantine equation constraining the
integers m1, m2, n1, n2:(
a10
a20

)2(
m2

1 +m2
2 + 2m1m2 cos 2𝜃1

)
= n21 + n22 + 2n1n2 cos 2𝜃2 (3)

Notice that Equation (3) does not depend on 𝜃. For a commen-
surate stacking the twist angle and the integersm1, m2, n1, n2 are
related via the equation

𝜃 = ln
[
a10(m1e

−i𝜃1 +m2e
i𝜃1 )

a20(n1e−i𝜃2 + n2ei𝜃2 )

]
(4)

The number of commensurate stackings forms a set of measure
zero in the whole space of possible stackings. However, the ex-
perimental evidence suggests[42–46] that 2D vdW crystals tend to
relax into stacking configurations that are, at least locally, com-
mensurate.
The size of the primitive cell increases very rapidly as the

twist angle 𝜃 decreases for 𝜃 < 5◦. For this reason, to treat vdW
systems with small twist angles, it is more efficient to use an
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effective model in momentum space[47–49] in which only the
dominant interlayer tunneling processes are kept. For small twist
angles an accurate description is obtained by keeping only those
tunneling processes for which |k1 − k2| = |G1 −G2| is smallest.
For the practically important case in which the 2D crystals are
triangular lattices and the low energy states (i.e., the states clos-
est to the Fermi energy) are located at the corners (K and K′

points) of the hexagonal Brillouin zone (BZ), as for graphene,
the minimum value of |G1 −G2| is equal to 2K sin(𝜃∕2), where
K = |K|, and there are three vectors qi = G1 −G2 (i = 1, 2, 3) for
which |qi| = q = 2K sin(𝜃∕2). If we account for all tunneling pro-
cesses with |k1 − k2| = q we find that the higher-order tunnel-
ing processes generate a honeycomb structure in momentum
space with nearest neighbor points connected by the vectors qi.

[49]

The relative contributions of higher-order recursive tunnel-
ing processes is controlled by the parameter 𝛾 ≡ t∕(𝜖(q)), where
t is the interlayer tunneling strength between states in the
two layers with momenta that differ by at most q, and 𝜖(q) =
min[𝜖1(q), 𝜖2(q)], where 𝜖𝓁(q) is the energy of electrons with mo-
mentum ofmagnitude q in layer 𝓁. The value of 𝛾 , therefore, con-
trols the size of this momentum space lattice that one needs to
consider to obtain an accurate band structure for the vdW system.
For 𝛾 < 1 the size of the required lattice in momentum space can
be quite small. For very small 𝛾 it is sufficient to keep just the first
“ring” of interlayer hopping processes. In this case the effective
Hamiltonian matrix takes the simple form:

Ĥk =

⎛⎜⎜⎜⎜⎜⎝

ĥ1(k) t̂†1 t̂†2 t̂†3
t̂1 ĥ2(q1 + k) 0 0

t̂2 0 ĥ2(q2 + k) 0

t̂3 0 0 ĥ2(q3 + k)

⎞⎟⎟⎟⎟⎟⎠
(5)

where t̂i are matrices containing the interlayer tunneling ele-
ments.
The model described above can be generalized to the case

when one (or more) of the layers forming the vdW system is su-
perconducting. For concreteness, let us consider the case when
the vdW system is formed by only two layers and only one is su-
perconducting; it is fairly straightforward to generalize the for-
malism tomore complex situations, such as when both layers are
superconducting. We assume layer 2 is a superconductor so that
H2 → HSC, and that this superconducting layer is a 2D crystal
with triangular lattice for which the low energy states are located
close to the corners of the BZ, theK andK points.We also assume
simple s-wave pairing so that the superconducting order param-
eter ΔSC couples states at opposite valleys with opposite spin and
momentum k, measured from K (K′). The Hamiltonian for the
vdW system isH =

∑
k Ψ

†
kSCĤ

SC
12 (k)ΨkSC, withΨ†

kSC = (𝜓†
k ,𝜓

T
−k),

𝜓
†
k,𝛼,𝛽1 ,𝛽2 ,𝛽3

=
(
c†k,𝛼 , d

†
k+q1 ,𝛼′1

, d†
k+q2 ,𝛼′2

, d†
k+q3+𝛼′3

)
(6)

and, to lowest order in 𝛾 :

ĤSC
12 (k) =

(
ĥ12(k) Δ̂SCΛ̂
Δ̂SCΛ̂† −ĥT12(−k)

)
(7)

where ĥ12 is the Hamiltonian given by Equation (5) and Λ̂ is the
matrix with indices describing the internal structure of the super-
conducting pairs in layer 2. For the case in which layer 1 has spin
and sublattice degrees of freedom 𝛼 and in layer 2, at low ener-
gies, we can assume that the only internal degree of freedom is
the spin, Λ̂ is a 10 × 10 block diagonal matrix given by:[50]

Λ̂ = diag
(
0, i𝜎̂2, i𝜎̂2, i𝜎̂2

)
(8)

where the first block is a 4 × 4 matrix of zeros and 𝜎̂2 is a 2 × 2
Pauli matrix in spin space. As we will discuss in Section 5.2, the
form for Λ̂ given by Equation (8) is applicable to the case of a
vdW structure composed of a superconducting TMD monolayer
coupled to a graphenic layer, such SLG or BLG.

3. Graphene-TI Heterostructures

In this section we follow the theoretical treatment given in ref.
[14] to examine the electronic properties of graphene-TI vdW
heterostructures.[51,52] The original motivation for studying the
properties of a graphene layer coupled to the 2D surface of a 3DTI
was the possibility of inducing strong SOC or novel spin textures
in the graphene layer predicted by theoretical models.[14,53,54] Ex-
citingly, this proximity-induced SOC has recently been observed
using a combination of transport measurements and ab initio
calculations.[15] Additionally, we also note that the possibility of
inducing Dirac states with very low Fermi velocity, in which
interaction effects could be greatly enhanced,[55] has also been
discussed.
In graphene the carbon atoms are arranged in a 2D hon-

eycomb structure formed by two triangular sublattices, A
and B, with lattice constant ag =

√
3a = 2.46Å, with a = 1.42Å

the carbon–carbon atomic distance. The low energy states of
graphene are located at the K and K′ points of the BZ: K =
(4𝜋∕(3ag ), 0), K′ = (−4𝜋∕(3ag ), 0) (and equivalent points con-
nected by reciprocal lattice wave vectors). At low energies close to
the K and K′ points in graphene, the electrons are well described
as massless Dirac fermions with Hamiltonians

Hg,K =
∑
k

∑
𝜏𝜏′

∑
𝜎𝜎′

c†K+k,𝜏𝜎h
g,K
k;𝜏𝜏′ ,𝜎𝜎′

cK+k,𝜏′𝜎′

ĥg,Kk =
(
ℏvFk ⋅ 𝝉 − 𝜇g𝜏0

)
⊗ 𝜎̂0 (9)

and

Hg,K′ =
∑
k

∑
𝜏𝜏′

∑
𝜎𝜎′

c†
K′+k,𝜏𝜎h

g,K′

k;𝜏𝜏′ ,𝜎𝜎′
cK′+k,𝜏′𝜎′

ĥg,K
′

k = −
(
ℏvFk ⋅ 𝝉

∗ + 𝜇g𝜏0
)
⊗ 𝜎̂0 (10)

where c†p,𝜏𝜎 (cp,𝜏𝜎) is the creation (annihilation) operator for an
electron, in the graphene sheet, with spin 𝜎 and 2D momen-
tum ℏp = ℏ(px, py), k is a wave vector measured from K (K′),
vF = 106 m s−1 is the Fermi velocity, 𝜇g is the chemical poten-
tial, and 𝜏i and 𝜎̂i (i = 0, 1, 2, 3)) are the 2 × 2 Pauli matrices in
sublattice and spin space, respectively.
One class of materials for which the effect of spin-orbit cou-

pling on the low energy fermionic states is particularly strong is
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one of the 3D topological insulators (TIs).[11–13] In these materials
the combination of spin-orbit coupling and time reversal symme-
try guarantees the presence of topologically protected 2D surface
states within the band gap of the bulk states. For this reason, 3D
TI materials are in many respects ideal materials for the creation
of novel vdW heterostructures in which the effect of SOC is sig-
nificant.
The 2D states at the TI’s surface (TIS) are well described as

massless Dirac fermions with Hamiltonian:[56,57]

HTIS =
∑
k,𝜎𝜎′

d†k,𝜎h
TIS
k;𝜎𝜎′dk,𝜎′

ĥTISk = ℏvTI(𝝈 × k) ⋅ ẑ − 𝜇TI𝜎̂0 (11)

where d†k,𝜎 (dk,𝜎) creates (annihilates) a surface massless Dirac
fermion with spin 𝜎 at wave vector k = (kx, ky, 0) measured from

the zone center (Γ-point) of the surface-projected (BZ), 𝝈 =
(𝜎̂1, 𝜎̂2, 𝜎̂3) is the vector of Pauli matrices acting on spin space,
ẑ is the unit vector in the z direction, and 𝜇TI is the chemical po-
tential.
For our purposes, a particularly interesting class of 3D TIs is

the one of the tetradymites, such as Bi2Se3, Bi2Te3, and Sb2Te3.
These 3D TIs have the exceptional property that the lattice con-
stant of the 111 surface, aTI, is such that: aTI∕(

√
3ag ) = 1 + 𝛿 with

𝛿 < 1% for Sb2Te3 and 𝛿 ≈ −3% (𝛿 ≈ +3%) for Bi2Se3 (Bi2Te3).[14]
As a consequence, in the limit 𝛿 → 0, graphene and the TI sur-
face can be stacked in a commensurate arrangement as shown, in
momentum space, in Figure 1a. For such a stacking arrangement
the corners of graphene’s BZ are precisely above the Γ̄ points of
the TI surface BZ. For this stacking the primitive cell of the het-
erostructure corresponds to the primitive cell of the TI’s surface
and therefore the BZ of the resulting vdW system is equal to the
BZ of the TI’s surface. The K and K′ points of the graphene BZ
are folded back to the Γ̄ point, as shown in Figure 1b.
In the remainder of this section we limit our discussion to

the cases in which the TI is Bi2Se3, Bi2Te3, or Sb2Te3, for which
vTI ≈ vg∕2, given that these materials allow the formation of
a graphene-TI vdW system with commensurate stacking and
therefore significant hybridization between the graphene and TI

Figure 1. a) Schematic of the first seven extended Brillouin zones of
graphene, shown in red, superimposed on the extended Brillouin zones

of a TI, shown in green, for the case of
√
3 ×

√
3 commensurate stacking.

b) Depiction of the folded Brillouin zone for the same stacking as in (a).

c) The real space picture associated with the
√
3 ×

√
3 graphene-TI com-

mensurate stacking. Adapted with permission from Phys. Rev. Lett. 112,
096802 (2014).

surface states. Experimentally it turns out to be difficult to pin
the Fermi energy of Bi2Se3, Bi2Te3, Sb2Te3 in the middle of the
bulk gap so that only the surface states play an active role. One
way in which this problem has been overcome is by considering
the corresponding ternary and quaternary compounds.[58–64]

Different commensurate stacking configurations, correspond-
ing to Figure 1, can be realized by rigid relative shifts of the
graphene and TI lattices. Ab initio results[53] suggest that the low-
est energy stacking is the one for which the TI surface atoms are
located at the center of the hexagons forming the graphene struc-
ture. However, the binding energy for the structure in which the
TI surface atoms are directly below the carbon atoms of graphene
(either the ones forming the A sublattice, or the ones forming
the B sublattice) is only marginally higher.[53] Considering that,
experimentally, vdW systems are obtained via mechanical exfoli-
ation that allows the realization of, long-lived, metastable states,
and the fact that when the TI’s surface atoms are directly below
the carbon atoms of graphene a stronger hybridization of the
graphene and TI states is realized, it is interesting to consider
this situation.
In the

√
3 ×

√
3 commensurate stacking, in which each atom

on the TI surface is directly underneath a carbon atom, the dom-
inant interlayer tunneling term is the one between the atoms
on sublattice A (or B) and the TI atoms so that, in momen-
tum space, the tunneling Hamiltonian can be written as Ht =∑

k,𝜆,𝜏,𝜎 t𝜏d
†
k,𝜎c𝜆,k,𝜏,𝜎 + h.c., where 𝜆 = K, K ′ and tA = t, tB = 0 are

the tunneling matrix elements assumed to be spin and momen-
tum independent. The Hamiltonian matrix for such a structure
takes the form

Ĥk =
⎛⎜⎜⎜⎝
ĥg,Kk 0 t̂†

0 ĥg,K
′

k t̂†

t̂ t̂ ĥTISk

⎞⎟⎟⎟⎠, t̂ =

(
t 0 0 0

0 0 t 0

)
(12)

where the graphene blocks are 4 × 4 matrices in sublattice and
spin space and the block describing the TI’s surface states is a
2 × 2 matrix in spin space. We note that an analogous Hamil-
tonian can also be constructed for the similar vdW heterostruc-
ture in which single layer graphene (SLG) is replaced by bilayer
graphene (BLG) to form a BLG-TI system.[14]

The simple Hamiltonian in Equation (12) allows us to under-
stand the qualitative features of the bands resulting from the hy-
bridization between the graphene states and the states of the TI
surface. Figure 2a shows the bands obtained by diagonalizing Ĥk
assuming 𝜇g = 𝜇TI = 0 and t = 45 meV. From Figure 2a, we see
that the fourfold degeneracy of the graphene states (spin and val-
ley degrees of freedom) is partially lifted as two spin-split Rashba
bands appear (shown in red and blue). However, we also see that
two of the original graphene states at the K and K′ points re-
main spin degenerate (shown in grey), due to the fact that in
the chosen configuration one sublattice does not couple to the
TI. Moreover, the TI surface bands (shown in green) become
quadratic at low energy as a consequence of hybridization with
the graphene states.
We nowdiscuss the case of stacking configurations that deviate

from the
√
3 ×

√
3 configurations discussed above either because

of a small twist angle 𝜃 or because of a mismatch of the graphene
and TI lattice constants. Figure 3a,b shows how the orientations
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Figure 2. a) Band structure for the
√
3 ×

√
3 commensurate graphene-

TI structure described by Equation (12), assuming 𝜇g = 𝜇TI = 0 and t =
45 meV. b) The in-plane spin projection of the eigenstates associated with
the bands in (a), evaluated at the energy E = 80 meV. Adapted with per-
mission from Phys. Rev. Lett. 112, 096802 (2014).

Figure 3. a) Schematic of the first seven extended Brillouin zones of
graphene (red) superimposed on the extended Brillouin zones of a TI

(green) with a slight rotation away from precise
√
3 ×

√
3 commensurate

stacking. Also shown the vectors qi describing the displacement of the
corners of the first Brillouin zone of graphene from the nearest Γ̄ points
in the TI surface. b) Similar schematic to (a) for the case when the de-

viation from the
√
3 ×

√
3 commensurate stacking is caused by a lattice

mismatch. Also shown the vectors qi describing the displacement of the
corners of the first Brillouin zone of graphene from the nearest Γ̄ points in
the TI surface for this case. Adapted with permission from Phys. Rev. Lett.
112, 096802 (2014).

of the TI and graphene BZs are affected by the presence of a twist
angle and a lattice mismatch, respectively. We see that, due to
the conservation of the crystal momentum, the states at the K
(K′) point of graphene now tunnel to the TI surface states with
momentum qi (i = 1, 2, 3). For the twisted case, the magnitude of
this vector is |qj| ≡ q = 2K sin(𝜃∕2), while for the case of a lattice
mismatch we have q = |𝛿∕(1 + 𝛿)|K.
Assuming 𝛾 << 1, we can use the simple Hamiltonian in

Equation (5), with ĥ1 = ĥg,K , ĥ2 = hTIS and

t̂1 =
(
t′ t′ 0 0
0 0 t′ t′

)
, t̂2 =

(
t′ t′e−i

2𝜋
3 0 0

0 0 t′ t′e−i
2𝜋
3

)
,

t̂3 =

(
t′ t′ei

2𝜋
3 0 0

0 0 t′ t′ei
2𝜋
3

)

with t′ = t∕3. A similar Hamiltonian is valid for the K ′-valley.[14]

By diagonalizing the resulting Hamiltonian we obtain the low

Figure 4. a) Band structure for a twisted graphene-TI system for the case
when 𝛾 = 0.2, calculated by diagonalizing the Hamiltonian in Equation (5)
along the ABCDA path indicated in Figure 3. b) The in-plane spin projec-
tion of the eigenstates associated with the bands in (a), evaluated at the
energy E = 0.5E0 where E0 is indicated in (a). Adapted with permission
from Phys. Rev. Lett. 112, 096802 (2014).

energy band structure. Figure 4a shows the bands along the path
ABCDA shown in Figure 3a for the case when 𝛾 = 0.2. Assuming
t = 45 meV, this value of 𝛾 corresponds to a deviation from the√
3 ×

√
3 stacking by a twist angle 𝜃 = 0.76◦. Figure 4b shows

the spin texture on the Fermi surface with 𝜖F = vTIq∕2. Similar
to the

√
3 ×

√
3 commensurate case shown in Figure 2, we see

that the strong SOC of the TI induces a strong spin polarization
of the states of the hybridized system even when the stacking
configuration deviates from the ideal

√
3 ×

√
3 one.

3.1. Transport Properties

The intrinsic SOC in graphene and bilayer graphene is negligible
so that the spin degree of freedomdoes not affect significantly the
transport properties.[7,65–72] In the presence of SOC, charge and
spin transport become coupled.[73–75] Therefore, in vdW systems
with SOC we expect that, in general, transport properties will be
spin-dependent and that such properties could differ consider-
ably from isolated systems with SOC. Exemplary in this respect
are the vdW systems formed by a layer with strong SOC, such
as a TMD monolayer, and either graphene or bilayer graphene.
In graphene-TI vdW systems the combination of the high mo-
bility of graphene, the strong SOC of the TI, and the increased
screening[76–80] of impurities due to the presence of the graphene
layer,[81] can lead to very strong spin-dependent effects, such as
a giant Edelstein effect.[82] To illustrate the potential for realiz-
ing spin-dependent transport effects in vdW systems in which
one layer has a strong SOC we discuss the case of a graphene-TI-
Ferromagnet vdW system,[82] shown schematically in Figure 5a.
Throughout this section, we assume that the ferromagnet

(FM) is insulating so that its presence does not significantly alter
the bands of the graphene-TI part of the vdW heterostructure.
The main effect of the insulating FM layer is to induce an ex-
change field for the electrons in the heterostructure. This effect
is captured by adding the termHex ∝ M ⋅ 𝝈, whereM is the mag-
netization of the insulating FM, to the Hamiltonian discussed in
Section 3. The presence of this additional term simply causes a
spin-splitting that we denote by Δ.
In a graphene-TI-FM vdW system the dominant source of

scattering, at low temperatures, is the presence of charge
impurities[83] close to the surface of the TI.[84–88] In the absence of
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screening, the bare scattering potential due to an isolated charge
impurity, in momentum space, is v(q) = 2𝜋e2e−qd∕(𝜅q), where
d is the average distance of the impurities from the TI’s sur-
face, and 𝜅 = (𝜅TI + 𝜅0)∕2 is the average dielectric constant with
𝜅TI ≈ 100[85,89–91] the dielectric constant for the TIS and 𝜅0 = 1
the dielectric constant of vacuum. Accounting for screening, the
scattering potential becomes v(q)∕𝜖(q) where 𝜖(q) is the dielectric
function. For temperatures much lower than the Fermi tempera-
ture we can assume 𝜖(q) ≈ 1 + vc(q)𝜈(𝜖F), where vc(q) = 2𝜋e2∕(𝜅q)
and 𝜈(𝜖F) is the density of states at the Fermi energy. Using this
form for the scattering potential we can calculate the lifetime
𝜏0a(k) of a quasiparticle in band a with momentum k, in the first
Born approximation, using

ℏ

𝜏0a(k)
= 2𝜋

∑
a′q

nimp

|||| v(q)𝜖(q)

||||2|⟨a′k + q|ak⟩|2𝛿(𝜖a,k − 𝜖a′ ,k+q) (13)

where nimp is the impurity density, |ak⟩ is the Bloch state with
momentum k and band index a, and 𝜖a,k is the energy for a
quasiparticle with momentum k in band a. For typical TI’s sam-
ples we have nimp ≈ 1012cm−2.[91] It is useful to define an aver-
age ⟨𝜏0⟩ of 𝜏0 over the bands at the Fermi energy as ⟨𝜏0(𝜖F)⟩ ≡∑

ka 𝜏0a(k)𝛿(𝜖F − 𝜖ka)∕
∑

ka 𝛿(𝜖F − 𝜖ka). We allow for an offset be-
tween the charge neutrality point of the SLG (BLG) and the TI
surface given by 𝛿𝜇.
Figure 5b shows how ⟨𝜏0(𝜖F)⟩ compares for: an isolated TI sur-

face, a SLG-TI vdW system, and BLG-TI vdW system. Solid lines
denote the cases when the tunneling between the SLG/BLG and
the TI is finite, while dashed lines denote the cases with zero
interlayer coupling. We see that the presence of SLG or BLG sig-
nificantly increases the quasiparticle lifetime, even in the limit
when the interlayer tunneling between the TI and SLG (BLG)
is zero. This is due to the additional screening in the presence
of SLG or BLG which affects the disorder potential created by
the charge impurities.[81,92] We expect that such an increase in
the quasiparticle lifetime will lead to enhancements in some of
the spin-dependent transport phenomena. Similarly, by includ-
ing the [1 − k ⋅ (k + q)] under the sum on the right hand side of
Equation (13) we can obtain the transport time 𝜏ta(k), and then, af-
ter averaging over the bands at the Fermi energy, the correspond-
ing average ⟨𝜏t⟩. Figure 6a shows ⟨𝜏t⟩ as a function of 𝜖F for an
isolated TI surface together with results for, both, TI-SLG, and
TI-BLG vdW systems. We see that the presence of SLG or BLG
increases the transport time, a consequence of the additional

Figure 5. a) Sketch of a TI-graphene-FM vdW system. b) ⟨𝜏0(𝜖F)⟩ for Δ =
0, 𝛿𝜇 = 0, nimp = 1012 cm−2, and d = 1 nm. The dashed lines show the
results for the limit t = 0, the solid one the ones for t = 45 meV. Adapted
with permission from Phys. Rev. B 96, 235419 (2017).

Figure 6. a) ⟨𝜏t(𝜖F)⟩ forΔ = 0, 𝛿𝜇 = 0, and nimp = 1012 cm−2. The dashed
lines show the results for the limit t = 0, the solid one the ones for
t = 45 meV. b) 𝜎yy(𝜖F), for TI (dashed line), TI-SLG (dotted line), and
TI-BLG (solid line) for Δ = 0, 𝛿𝜇 = 0, nimp = 1012 cm−2, d = 1 nm, and
t = 45 meV, and Adapted with permission from Phys. Rev. B 96, 235419
(2017).

screening due to the graphenic layer. Moreover, we note that this
enhancement is particularly significant for the case of TI-BLG.
Using linear-response theory in the long-wavelength regime,

the d.c. longitudinal conductivity is given by

𝜎ii ≈ e2

2𝜋Ω
Re

∑
k,a

viaa(k)ṽ
i
aa(k)G

A
kaG

R
ka (14)

where Ω is the area of the BZ, viaa(k) ≡ ⟨ak|vi|ak⟩ is the expec-
tation value of the i-th component of the velocity operator v =
ℏ−1𝜕Hk∕𝜕k, ṽiaa(k) = (𝜏a∕𝜏0a)kviaa(k) is the disorder-renormalized
velocity (at the ladder approximation level), and GR∕A

ka = (𝜖F −
𝜖ka ± iℏ∕2𝜏0a(k))−1 is the retarded/advanced Green’s function, for
electrons with momentum k and band index a. The increase of 𝜏t
due to the presence of SLG or BLG is also reflected in an increase
of the d.c. conductivity, as can be seen in Figure 6b. We note that
for finite values of the spin-splitting, Δ, the results for 𝜏0, 𝜏t, and
𝜎ii are very similar to the ones shown in Figures 5b and 6.[82]

Having established the basic charge transport properties we
now briefly discuss spin-dependent transport. A signature effect
of the coupling between charge and spin transport that can take
place in systems with spin-orbit coupling is the inverse Edelstein
effect.[93,94] In this effect a charge current causes a spin accumu-
lation transverse to the direction of the current. In the long wave-
length, dc, limit, of the linear response regime, such an effect is
encoded by the spin-current response function:

𝜒 sxJy ≈ e
2𝜋Ω

Re
∑
k,a

sxaa(k)ṽ
y
aa(k)G

A
kaG

R
ka (15)

where siaa(k) ≡ ⟨ak|si|ak⟩ is the expectation value of the i-th com-
ponent of the spin density operator.
Figure 7a displays a significant enhancement of the spin-

current response 𝜒 sxJy in SLG-TI (BLG-TI) vdW system, com-
pared to an isolated TI’s surface. This enhancement is due to the
presence of the graphenic layer and occurs for, both, the case of
finite (solid lines) and zero Δ (dashed lines). As the sketch in the
inset shows, a current in the y-direction causes a spin accumula-
tion in the transverse direction x. An increase of 𝛿𝜇 can signifi-
cantly enhance the spin-current response, as shown in Figure 7b,
whereas Δ has a small effect.[82]
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Figure 7. a) 𝜒 sx Jy as a function of 𝜖F for 𝛿𝜇 = 0 and Δ = 20 meV (Δ = 0),
solid (dashed) lines. Inset: sketch showing the spin density accumulation
on the top and bottom surface of the TI induced by a current in the y direc-
tion. b) Enhancement of 𝜒 sx Jy in a TI-BLG system compared to TI alone as
a function of 𝜖F and 𝛿𝜇 for Δ = 0. For both the panels nimp = 1012 cm−2,
d = 1 nm. Adapted with permission from Phys. Rev. B 96, 235419 (2017).

The fact that the Edelstein effect can be much stronger in vdW
systems like TI-SLG and TI-BLG than in isolated TIs[95–100] is due
to the fact that the bands for the vdW system retain a strong
SOC, even after the hybridization of the states in the TI and the
graphenic layer, and the fact that the quasiparticle relaxation time
can be greatly increased when the dominant source of scatter-
ing is charge impurities, thanks to the additional screening pro-
vided by the graphenic layer. As mentioned above, the enhance-
ment of the lifetime gained from the additional screening makes
it possible for vdW systems like TI-BLG to have quite stronger
spin-charge coupled transport than isolated systems like TIs even
when the tunneling between the two layers of the vdW system
is negligible.
So far we have considered the case in which the interlayer tun-

neling is constant; however, spin and charge transport can be
coupled in vdW systems such as graphene-TI heterostructures
even in the limit when the interlayer tunneling is predominantly
random.[101] In this case the evolution, in the diffusive limit, of
the graphene’s charge density, n, and spin density, s, are given by
the following equations:[101]

𝜕tn = D̄∇2(n + 2𝜌V) + ΓnslTI(ẑ × 𝛁)(s − 2𝜌h)

− 2 𝜌Γt

Γt + Γt
TI

𝜕t(V − VTI) (16)

𝜕ts =
(
D∇2 − Γt

)
(s − 2𝜌h) + 𝛼ΓtlTI(ẑ × 𝛁) × (s − 2𝜌h)

+ΓtlTI(ẑ × 𝛁)
[
lTI(𝛁 × (s − 2𝜌h))z + (n + 2𝜌V)∕2

]
(17)

where V , VTI are external driving potentials for the charge in the
graphene layer and TI’s surface, respectively, 𝜌 is graphene’s den-
sity of states at the Fermi energy, and h is an external driving
potential for the spin in the graphene layer. D̄ is the weighted av-
erage of the diffusion constants of graphene,D, and TI’s surface,
DTI

D̄ =
ΓtDTI + Γt

TID

Γt + Γt
TI

where Γt, Γt
TI, are the tunneling rates for graphene and the TI,

respectively: Γt = 𝜋𝜌TIt
2, Γt

TI = 𝜋𝜌t2, with 𝜌TI the density of states

of the TI’s surface at the Fermi energy. The interlayer tunneling
processes are assumed to be well localized in space so that in
momentum space the disorder average of the second moment of
the interlayer tunneling matrix is just a constant, t2. The second
term on the right hand side (r.h.s.) of Equation (16) describes the
coupling between charge and spin transport with

Γns = 2
ΓtΓt

TI

Γt + Γt
TI

and lTI the electron’s mean free path on the TI’s surface. The last
term on the r.h.s. of Equation (16) describes the effect of time-
dependent driving potentials for the charge. The second term on
the r.h.s. of Equation (17) is due to the spin-orbit coupling term
that is induced by proximity in the layer with no spin-orbit cou-
pling even when the interlayer tunneling is predominantly ran-
dom. The coefficient of this term is

𝛼 =
𝜖F𝜏

0

2𝜋2𝜌TIDTI

where 𝜖F is the Fermi energy and 𝜏0 is the quasiparticle relaxation
time in the graphene layer due to intralayer disorder.
Equations (16) and (17) are valid when the interlayer tunnel-

ing rate is much smaller than the intralayer scattering rate, and
for time scales much longer than the largest relaxation time 𝜏
(𝜔𝜏 ≪ 1). They show that even when the interlayer tunneling
is random, charge and spin transport in the layer with no SOC
are coupled. We can then conclude that even for vdW systems
in which, due to the low quality of the interfaces, the interlayer
tunneling is random, spintronics effects, such as the Edelstein
effect, can be realized.[101] The fact that Γns depends on the in-
tralayer and interlayer scattering rates, that in turn are directly
proportional to the density of states at the Fermi energy, implies
that in systems in which for at least one of the layers the density
of states depends on the doping –such as for the surface of a TI
or graphene– it is possible to tune the coupling between spin and
charge transport simply via external gate voltages.

4. Graphene-TMD Heterostructures

In recent years, much progress has been made on the char-
acterization of the electronic properties of graphene-TMD het-
erostructures, both theoretically and experimentally. A mono-
layer TMD can be either metallic, such as NbSe2, or a direct gap
semiconductor such as MoS2, and WSe2. At low temperatures
NbSe2becomes superconducting and so we defer discussion of
graphene-NbSe2vdW systems to the following section, see in par-
ticular Section 5.2. In this section we briefly summarize themain
results for graphene-TMD heterostructures in which the TMD is
a semiconductor.
The structure of a TMD monolayer is shown schematically in

Figure 8a where the purple spheres represent themetallic atoms,
such as Mo inMoS2, and the green spheres the chalcogen atoms,
S in MoS2. One of the main features of TMDs is the presence of
strong SOC, which, in monolayers, induces a sizeable spin split-
ting of the hole bands[102–106] located at the corners of the BZ,
as shown in Figure 8b. At low energies, the bands of a TMD
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Figure 8. a) Sketch of the typical lattice of a transition metal dichalco-
genide monolayer, with purple spheres representing the metallic atoms
and green spheres the chalcogen atoms. b) Schematic of the first Bril-
louin zone of MoS2with the low energy bands at the K and K′ points.
Spin-polarization of the valence bands denoted with arrows. Adapted with
permission from Phys. Rev. Lett. 116, 257001 (2016).

semiconductor monolayer such as MoS2, are well described by
the following Hamiltonian:[107]

ĥTMD
k = a𝛾

(
𝜆kx𝜅̂1 + ky𝜅̂2

)
+ u
2
𝜅̂3 −𝜇𝜅̂0 −

𝜆𝛼

2

(
𝜅̂3 − 𝜅̂0

)
⊗ 𝜎̂3 (18)

where a is the in-plane lattice constant, 𝛾 the in-plane hopping
amplitude, 𝜆 = ±1 is the index denoting the valley (K or K′), kx ky
are the in-plane components of the electrons wave vector, mea-
sured from the corner of the BZ, 𝜅̂i are 2 × 2 Pauli matrices in
the orbital space,[102] u is the band-gap, 𝜇 the chemical potential,
and 2𝛼 is the spin-splitting of the valence bands at the K (K′)
point due to the presence of spin-orbit coupling. In the case of
MoS2these parameters are a = 3.193Å, 𝛾 ≈ 1.1 eV, u ≈ 1.65 eV,
and 2𝛼 ≈ 0.15 eV.[102]

Given that the semiconducting monolayer TMDs have a fairly
large gap, ≈ 2 eV, and a large lattice mismatch with graphene,
one would expect that their effect on the graphene band struc-
ture could be negligible. Indeed, it is the case that the effects in-
duced by proximity of the TMD to the SLG (or BLG) are quanti-
tatively small. However, the presence of these effects can be qual-
itatively very significant due to the fact that in pristine SLG and
BLG the spin-splitting from intrinsic SOC is very small, of the
order of 10 𝜇eV.[108] This means that even a small enhancement
of the SOC induced by the proximity of a TMD monolayer can
profoundly affect the electronic properties of SLG and BLG.
Ab initio calculations[109–111] show that semiconducting mono-

layer TMDs such as MoS2, MoSe2, MoTe2, WS2, WSe2, WTe2can
enhance SOC in graphene to induce spin-splittings of the order
of 1 meV, that is, orders of magnitude larger than the graphene’s
intrinsic SOC. The enhancement increases with the atomic num-
ber of the metal forming the TMD. For the case of graphene-
WSe2vdW systems the SOC induced by proximity in graphene is
sufficient to create a band inversion of the spin-split bands close
to the original graphene’s Dirac point. Such a band inversion
could lead to topological phases exhibiting the quantum spinHall
effect in SLG-TMD[110,112,113] or BLG-TMD[114] heterostructures.
The enhancement of the SOC in graphene-TMD vdW systems
has been observed, indirectly, via weak antilocalization[115–121] and
spin-relaxation measurements.[122–126] It has also been suggested
that by tuning the twist angle between graphene and the TMD
the nature, from Zeeman-like to Rashba-like, and strength of
the induced SOC can be tuned.[127,128] Similarly to the case of

graphene-TI systems, spin and charge transport are also cou-
pled in graphene-TMD heterostructures[129,130] as demonstrated
experimentally in graphene-MoS2,

[131,132] graphene-WS2,
[133,134]

graphene-MoTe2,
[135] and graphene-TaS2

[136] devices.
For the case of TMD-BLG vdW systems the resulting struc-

ture of the hybridized bands is richer and tunable via an ex-
ternal electric field.[111] For WSe2-BLG ab initio results show
that the proximity of the TMD induces a gap in BLG of the
order of 10 meV and SOC splittings of about 2 meV.[111] Very
recent experiments[137] on symmetric WSe2-BLG-WSe2vdW sys-
tems have shown a strong enhancement of the SOC in graphene
and clear signatures of the SOC-driven band inversion.

5. Superconductor-Based van der Waals Systems

Van der Waals heterostructures constructed with superconduct-
ing layers are extremely interesting because they allow the re-
alization of novel superconducting states. In particular, when
one of the layers has strong SOC, such heterostructures can be
engineered to realize topologically non-trivial superconducting
states[138–142] as well as states with odd-frequency pairing.[143,144]

Given the scope of the special issue, below we focus on the cases
in which the vdW heterostructure can host odd-frequency super-
conducting pairing.

5.1. Odd-Frequency Pairing

In general, the order parameter describing a correlated electronic
state is given by a many-body wavefunction, which must be com-
pletely antisymmetric under the permutation of all quantum
numbers. This antisymmetry constrains the allowed symmetries
of the order parameter. In the limit of static order parameters
and a single relevant band degree of freedom, this constraint im-
plies that even-parity order parameters (s- or d-wave) must be odd
in the spin index (spin-singlet) while odd-parity order parame-
ters (p- or f -wave) must be even in spin (spin-triplet). The term
odd-frequency pairing refers to the possibility that themany-body
state is odd in the relative time coordinate, or, equivalently, in the
relative frequency. Therefore, odd-frequency states must possess
spatial and spin symmetries with the exact opposite correspon-
dence from the static case: that is, even-parity statesmust be spin-
triplet and odd-parity must be spin-singlet. An odd-frequency
state was first proposed by Berezinskii[145] as a possible super-
fluid state for He3. Later on, Berezinskii’s proposal was extended
to superconducting systems.[146–151] However, it has been pointed
out that constraints on the electron–phonon interactions inhibit
odd-frequency pairing,[152] and that simplemodels of intrinsically
odd-frequency superconducting states may be unstable.[153–155]

While the status of intrinsic odd-frequency states is un-
certain, much progress has been made toward understand-
ing how odd-frequency superconducting correlations can be in-
duced using conventional superconductors in heterostructures.
One theoretically well-established example can be found in
superconductor–ferromagnet junctions which allow the conver-
sion of conventional s-wave spin-singlet Cooper pairs to odd-
frequency spin-triplet pairs, due to the breaking of spin-rotational
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symmetry.[143,156–163] Experimental signatures of odd-frequency
correlations have been observed in real systems.[164–170] Another
notable example is the interface between a conventional super-
conductor and a normal metal, in which odd-frequency pairing
can emerge due to broken spatial translation symmetry.[171,172]

In this case, the magnitudes of the odd-frequency correlations
dominate over the even-frequency amplitudes at discrete en-
ergy levels coinciding exactly with peaks in the local density of
states,[172] indicating a relationship between these odd-frequency
pair amplitudes and McMillan–Rowell oscillations[173,174] as
well as midgap Andreev resonances.[175–177] Similar phenom-
ena have also been predicted to arise in layered 2D systems,
like vdW heterostructures, in which one of the components is
superconducting.[16,178–185] Given the growing number of vdW
systems available, the high level of tunability of their properties,
and the presence of a 2D surface accessible for interrogation by
experiments, vdW systems are ideal candidates for studying odd-
frequency superconducting states.
A set of general criteria for the emergence of odd-frequency

pairing in 2D systems were given in ref. [16]. To understand how
their results relate to layered vdW systems we will now provide a
sketch of their derivation.
To begin, we consider a vdW system formed by a 2D crystal

with HamiltonianH2D, and a superconductor with Hamiltonian
HSC. Without loss of generality we assume the superconductor
to also be 2D. Let Ht describe tunneling processes between the
2D and the SC so that the Hamiltonian H for the entire bilayer
system can be written as H = H2D +HSC +Ht, with

H2D =
∑
k,𝜎,𝜎′

c†k,𝜎
[
h0(k)𝜎̂0 + h(k) ⋅ 𝝈

]
𝜎,𝜎′

ck,𝜎′ (19)

HSC =
∑
k𝜎𝜎′

d†k𝜎h
SC
𝜎𝜎′ (k)dk𝜎′ +

∑
k𝜎𝜎′

d†k𝜎Δ𝜎𝜎′ (k)d
†
−k𝜎′ + h.c. (20)

Ht = t
∑
k,𝜎

d†k,𝜎ck,𝜎 + h.c. (21)

where 𝜎̂i are the 2 × 2 Pauli matrices in spin space, c†k,𝜎 (d
†
k,𝜎) and

ck,𝜎 (dk,𝜎) are the creation and annihilation operators, respectively,
acting on the fermionic states in the 2DEG (SC) layer with mo-
mentum k and spin 𝜎, h0(k) is the spin-independent part of H2D
and h(k) is the field that describes its spin-dependent part due
to an exchange field and/or spin-orbit coupling. Here, hSC

𝜎𝜎′
(k)

describes the quasiparticle spectrum of the normal state of the
superconductor, Δ𝜎𝜎′ (k) is the superconducting order parameter
which, in general, has a linear combination of spin-singlet and
spin-triplet terms, and t is the tunneling between the 2D sys-
tem and the SC, which is assumed to conserve both spin and
momentum.
To examine the superconducting pairing induced in the non-

superconducting 2DEG by proximity to the SC, we study the
anomalous Green’s function, or pair amplitude, within the
2DEG, F̂2Dk;i𝜔n , which is a 2 × 2 matrix in spin space and a function
of both the crystal momentum k andMatsubara frequency 𝜔n. In
the absence of interlayer tunneling t no superconducting pairs
exist in the 2DEG and therefore F̂2Dk;i𝜔n = 0. However, for t ≠ 0 we
find that Cooper pairs can tunnel from the SC into the 2DEG, giv-
ing rise to superconducting correlations with novel symmetries

which depend on the properties of the 2DEG. To understand the
symmetries of these induced pairings it is sufficient to consider
the leading-order terms in perturbation with respect to the tun-
neling strength t:

F̂2Dk;i𝜔n = t2 Ĝ2D
k;i𝜔n

F̂SC
k;i𝜔n

(
Ĝ2D

−k;−i𝜔n

)T
(22)

where F̂SC
k;i𝜔n

is the anomalous part of the Green’s function for the
SC, given by

F̂SC
k;i𝜔n

=
(
sSCk,i𝜔n 𝜎̂0 + dk,i𝜔n ⋅ 𝝈

)
i𝜎̂2 (23)

where sSCk,i𝜔n (dk,i𝜔n ) represents the spin-singlet (spin-triplet) pair

amplitudes and Ĝ2D
k;i𝜔n

is the normal Green’s function for the
2DEG when t = 0, given by

Ĝ2D
k;i𝜔n

=
(i𝜔n − h0(k))𝜎̂0 + h(k) ⋅ 𝝈
(i𝜔n − h0(k))2 − |h(k)|2 (24)

Inserting Equations (23) and (24) into Equation (22) we obtain
the expression for F̂2Dk;i𝜔n , which can be written as

F̂2Dk;i𝜔n = Ak;i𝜔n

(
Fodd
k;i𝜔n

+ Feven
k;i𝜔n

)
(25)

where Feven
k;i𝜔n

(Fodd
k;i𝜔n

) are strictly even (odd) functions of Matsubara
frequency 𝜔n, and

Ak;i𝜔n
= t2

[
[(i𝜔n + h0(−k))

2 − |h(−k)|2]−1
× [(i𝜔n − h0(k))

2 − |h(k)|2]]−1 (26)

is the spin-independent amplitude arising from the product of
the denominators of the Green’s functions Ĝ2D

k;i𝜔n
, Ĝ2D

−k;−i𝜔n
. For

the most general form of H2D, Ak;i𝜔n
has both even and odd-

frequency terms; however, assuming h0(k) = h0(−k) and |h(k)| =|h(−k)|, which are true for most systems, Ak;i𝜔n
becomes an even

function of both frequency and momentum. In this case the rel-
ative contributions from the even- and odd-frequency pair ampli-
tudes are given by Feven

k;i𝜔n
and Fodd

k;i𝜔n
, respectively.

We can decompose each of these even/odd-frequency ampli-
tudes into spin-singlet and spin-triplet components:

Feven
k;i𝜔n

=
(
Sevenk;i𝜔n

𝜎̂0 +Deven
k;i𝜔n

⋅ 𝝈
)
i𝜎̂2 (27)

Fodd
k;i𝜔n

= i𝜔n

(
Soddk;i𝜔n

𝜎̂0 + Dodd
k;i𝜔n

⋅ 𝝈
)
i𝜎̂2 (28)

where, for the even-frequency amplitudes we have:

Sevenk;i𝜔n
=

[
𝜔2
n + h20(k) −

1
4
(|h+(k)|2 − |h−(k)|2)]sSCk;i𝜔n

−
[
h0(k)h−(k) +

i
2
h+(k) × h−(k)

]
⋅ dk;i𝜔n (29)
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Deven
k;i𝜔 =

[
𝜔2
n + h20(k) +

1
4
(|h+(k)|2 − |h−(k)|2)]dk;i𝜔n

−i h0(k)h+(k) × dk;i𝜔n −
1
2
h+(k)

(
h+(k) ⋅ dk;i𝜔n

)
+ 1
2
h−(k)

(
h−(k) ⋅ dk;i𝜔n

)
−
[
h0(k)h−(k) −

i
2
h+(k) × h−(k)

]
sSCk;i𝜔n (30)

and for the odd-frequency amplitudes:

Soddk;i𝜔n
= −h+(k) ⋅ dk;i𝜔n (31)

Dodd
k;i𝜔 = −h+(k)s

SC
k;i𝜔n

− ih−(k) × dk;i𝜔n (32)

where h±(k) ≡ h(k) ± h(−k) is the even/odd parity part of the
spin-dependent field in the 2DEG. Here, h+ can be interpreted
as the field arising from ferromagnetic ordering and h− as the
field due to SOC.
Focusing first on the even-frequency spin-singlet amplitudes,

we note that the first line in Equation (29) shows that, as expected,
if the SC layer has spin-singlet pair amplitudes, spin-singlet pair-
ing is also induced in the 2DEG. Moreover, from the second line
of Equation (29) we see that, due to the presence of SOC in the
2DEG, a singlet term can also be induced by spin-triplet pairing
in the SC. It is interesting to note that such contributions are only
possible if h− ≠ 0 and can be enhanced by adjusting the angle be-
tween h+(k) and h−(k).
Turning our attention to the induced even-frequency spin-

triplet pairing, we see that the first line in Equation (30) shows
an induced triplet pairing in the 2DEG directly proportional to
the d vector in the SC, as expected. The second and third lines in
Equation (30) show that the presence of the spin-dependent h(k)
field in the 2DEG layer induces a rotation of the d vector. The
last line in Equation (30) shows that the presence of SOC in the
2DEG layer also converts some of the spin-singlet amplitudes in
the SC to spin-triplet pairing in the 2DEG. As in Equation (29),
we only find this symmetry conversion between triplet and sin-
glet amplitudes when h− ≠ 0.
We now focus on the induced odd-frequency amplitudes. From

Equation (31) we see that an odd-frequency spin-singlet ampli-
tude is induced in the 2DEG layer when h+(k) ≠ 0 and a triplet
component is present in the SC. In contrast to the case of induced
even-frequency spin-singlet pairing, this odd-frequency ampli-
tude emerges due to a conversion of spin-triplet amplitude in
the SC to spin-singlet amplitude in the 2DEG for finite h+(k) not
h−(k).
In the case of the odd-frequency spin-triplet pairing, Equa-

tion (32) shows that two contributions are possible. One of these
involves a conversion from spin-singlet pairing in the SC to
triplet pairing in the 2DEG when h+(k) ≠ 0. We note that this
term, and Equation (31) are consistent with known results for the
case of ferromagnet/superconductor junctions.[143,156–163,186] The
last term in Equation (32) shows that a triplet component in the
SC can also induce an odd-frequency triplet term in the 2DEG in
the presence of SOC, h−(k) ≠ 0, as long as h− is not parallel to dk.
Typically, for an isolated system, the superconducting dk vector is
parallel to the direction of the SOC field and so the presence of

triplet pairing and SOC is not sufficient to realize odd-frequency
pairing. However, in a vdW, due to the fact that the vector fields
h−(k) and dk live in different layers, the condition h−(k) × dk can
be readily realized, as demonstrated in the concrete example be-
low. This fact, also considering the great experimental advances
in creating high quality vdW systems comprising a large variety
of materials, considerably enlarges the set of systems in which
odd-frequency superconducting pairing can be realized and
detected.
A real system in which the condition h−(k) × dk ≠ 0 can be re-

alized is a vdW system formed by a monolayer transition metal
dichalcogenide (TMD) placed on a superconducting surface with
Rashba SOC.[16] Considering only states close to the valence
bands in the TMD layer, the Hamiltonian in Equation (18) can
be simplified to obtain:

ĥTMD
k,𝜆 = −

(
a2𝛾2

u
k2 + u

2
+ 𝜇

)
+ 𝜆𝛼𝜎̂3 (33)

Considering that under parity 𝜆 → −𝜆, we can see that for a 2D
system described by the Hamiltonian given by Equation (33) we
have h+ = 0, and h− = 2𝜆ẑ, where ẑ is the unit vector normal to
the TMD monolayer.
Using the general expressions from Equations (29)–(32) we

can obtain the symmetry properties of the superconducting pair
amplitudes induced by proximity in a vdW system formed by
a hole-doped monolayer TMD and a generic superconducting
layer:

Sevenk,𝜆;i𝜔n
=
(
𝜔2
n + 𝜉

2
k + 𝛼

2
)
sSCk,𝜆;i𝜔n − 2𝜆𝛼𝜉kẑ ⋅ dk,𝜆;i𝜔n (34)

Deven
d,𝜆;i𝜔 =

(
𝜔2
n + 𝜉

2
k − 𝛼

2
)
dk,𝜆;i𝜔n + 2𝛼2

(
ẑ ⋅ dk,𝜆;i𝜔n

)
ẑ − 2𝜆𝛼𝜉ks

SC
k,𝜆;i𝜔n

ẑ

(35)

Soddk,𝜆;i𝜔n
= 0 (36)

Dodd
k,𝜆;i𝜔 = −i2𝜆𝛼ẑ × dk,𝜆;i𝜔n (37)

As described for the general case we see that the presence of SOC,
proportional to 𝛼, mixes the singlet and triplet components for
the even-frequency pair amplitudes. The SOC also generates an
odd-frequency triplet pair amplitude proportional to the strength
of the SOC in the TMD monolayer and the triplet component of
the SC, Equation (37).
We now consider an effective 2D SC with Rashba SOC,[187]

which can be realized on the surface of Pb. The surface of this
superconductor can be described using theHamiltonian in Equa-
tion (20) with

ĥSCk = 𝜖k𝜎̂0 + 𝜂ẑ ⋅ (𝝈 × k) (38)

where 𝜖k is the spin-independent part of the electrons’ dispersion
and 𝜂 is the strength of the Rashba SOC. The energy eigenvalues
of ĥSCk , Ek = 𝜖K ± 𝜂|k|, identify the bands of the SC in the normal
phase. For the order parameter, Δ̂, we assume, as is standard,[187]

that intraband pairing dominates and obtain the corresponding
anomalous Green’s function FSC in the energy eigenbasis of ĥ

SC
k .
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Rotating back to the spin basis in which ĥSCk is expressed in
Eq. (38) we obtain

F̂SC
k;i𝜔n

= Δ
(sSCk;i𝜔n 𝜎̂0 + dk ⋅ 𝝈)i𝜎̂2

(sSCk;i𝜔n )
2 − |dk|2 (39)

where Δ is the superconducting gap, and

sSCk;i𝜔n = Δ2 + 𝜔2
n + 𝜖

2
k + 𝜂

2k2 (40)

dk = 2𝜖k𝜂(−ky, kx, 0) (41)

are the singlet and triplet amplitudes, respectively. Notice that the
presence of Rashba SOC gives rise to a triplet component with an
in-plane d vector, that is, a d vector that is orthogonal to the h−(k)
field due to SOC in the monolayer TMD.
From Equation (37) we see that in vdW systems composed of

a TMD monolayer and an effective 2D SC with Rashba SOC an
odd-frequency spin-triplet pair amplitude will be induced with
strength proportional to the product of the SOC strength in the
TMD and the Rashba SOC strength in the SC. In this case, the
full anomalous Green’s function, FTMD, has the form F̂TMD

k,𝜆;i𝜔n
=

ATMD
k,𝜆;i𝜔n

(Fodd
k,𝜆;i𝜔n

+ Feven
k,𝜆;i𝜔n

) with

ATMD
k,𝜆;i𝜔n

= Δt2

[(i𝜔n − 𝜉k)2 − 𝛼2]2[(sSCk+K𝜆 ;i𝜔n )
2 − |dk+K𝜆 |2]

where Feven
k,𝜆;i𝜔n

and Fodd
k,𝜆;i𝜔n

have the same form as Equations (27)
and (28) with

Sevenk,𝜆;i𝜔n
=
(
𝜔2
n + 𝜉

2
k + 𝛼

2
)
sSCk+K𝜆 ;i𝜔n (42)

Deven
k,𝜆;i𝜔 = −

(
𝜔2
n + 𝜉

2
k − 𝛼

2
)
dk+K𝜆 − 2𝜆𝛼𝜉ks

SC
k+K𝜆 ;i𝜔n

ẑ (43)

Dodd
k,𝜆;i𝜔 = i4𝜆𝛼𝜂𝜖k+K𝜆 (k + K𝜆) (44)

where K𝜆 is the momentum vector at the K (K ′) point for 𝜆 = 1
(𝜆 = −1). Here,Dodd

k,𝜆;i𝜔 is the d-vector describing an odd-frequency
spin-triplet pair amplitude. Using the above expressions, we find
that this pair amplitude corresponds to a term in the anomalous
Green’s function of the form FTMD

↑↑∕↓↓ ∼ i𝜔n𝜂𝛼𝜖k𝜆(ky ± ikx), where

k̄ is the momentum measured from the center of the BZ.
So far we have assumed that interlayer tunneling conserves

spin and is entirely spin-independent. In general, tunneling
between between materials with different spin eigenstates is
spin-dependent. Such spin-dependence of the interlayer tun-
neling introduces additional mechanisms[160–162,188,189] by which
odd-frequency pairing terms can be generated in a vdW sys-
tem formed by a superconducting layer and a layer with strong
SOC. Suchmechanisms could naturally emerge in a vdW system
formed, for example, by a SC and the surface of a strong 3D TI
with a “spin-active” interface, as shown schematically in Figure 9.
There are two basic mechanisms by which an interface can ac-

tively affect the spin state |𝜎⟩: i) it can impart a spin-dependent
phase |𝜎⟩k → ei𝜃𝜎,k |𝜎⟩k due to the precession of the spin around
a magnetic moment present at the interface; ii) the tunneling
Hamiltonian can be off-diagonal in the spin basis, t̂ = t0𝜎̂0 + t ⋅
𝝈, where t is a 3-component vector, leading to spin flips. For

Figure 9. Schematic representation of a vdW system formed by a SC and
the surface of a strong 3D TI. Adapted with permission from Phys. Rev. B
89, 165309 (2014).

case (i), when the interlayer tunneling induces a spin-dependent
phase, we can see that a singlet state, |↑⟩k|↓⟩−k − |↓⟩k|↑⟩−k,
is converted, after tunneling, to the state ei𝜂k (ei𝜁k |↑⟩k|↓⟩−k −
e−i𝜁k |↓⟩k|↑⟩−k), where 𝜂k ≡ (𝜃↑,k + 𝜃↓,k + 𝜃↑,−k + 𝜃↓,−k)∕2 and 𝜁k ≡
(𝜃↑,k − 𝜃↓,k − 𝜃↑,−k + 𝜃↓,−k)∕2. Therefore, we see that a triplet com-
ponent with amplitude proportional to sin 𝜁k emerges due to the
spin-dependent phase introduced by a spin-active interface, even
when the SC only has a singlet pairing.
Using the same leading-order perturbation theory discussed

above we can deduce the symmetries of the proximity-induced
pair amplitudes in a vdW system that possesses a spin-active in-
terface. Here we briefly sketch how the approach leading to Equa-
tion (22) must be modified in this case, see ref. [162] for more
details. To account for spin-dependent phase factors we replace
the anomalous Green’s function of the superconducting layer,
F̂SC(k,𝜔), with a rotated version:

F̂SC
𝜃k
(k, i𝜔n) = ei𝜂kei

𝛿𝜃k
2 𝜎3 F̂SC(k, i𝜔n)e

i
𝛿𝜃−k
2 𝜎3 (45)

Then, we obtain the following leading-order contribution to the
anomalous Green’s function in the 2DEG layer:

F̂2Dk;i𝜔n = Ĝ2D
k;i𝜔n

t̂ F̂SC
𝜃k
(k, i𝜔n) t̂

T
(
Ĝ2D

−k;−i𝜔n

)T
(46)

From Eq. (46) we can readily deduce the symmetries of induced
pair amplitudes for a variety of vdW systems by inserting the ap-
propriate system-specific expressions for G2D and FSC.
In ref. [162], the pair symmetries given by Equation (46) were

examined assuming a conventional spin-singlet superconduct-
ing layer. The analysis was performed for three different 2DEG
layers: i) the surface of a 3D topological insulator (TI); ii) a fer-
romagnet with in-plane magnetization, i.e. an easy plane ferro-
magnet (FE); and iii) a ferromagnet with perpendicular magne-
tization, that is, a z-axis ferromagnet (FZ). We summarize the
results in Table 1, indicating whether or not odd-frequency pair-
ing can be realized in each of these systems for different kinds of
spin-active interfaces, and its character (singlet or triplet).
From Table 1 we see that when the 2DEG layer is either an

FZ or FE, odd-frequency pairing is induced for any kind of inter-
face, while odd-frequency pairing can only be induced in the TI
in the presence of spin-dependent phases. Comparing the dif-
ferent symmetries for the different kinds of interfaces we see
that for both the FZ and FE, spin-triplet pairing is always in-
duced. However, spin-singlet pairing can be induced in the FZ
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Table 1. Conditions for the realization of odd-frequency pairing, and its
spin symmetry, singlet (S) or triplet (T), for three superconductor-based
vdW heterostructures, FZ-SC, FE-SC, and TI-SC, including the effect of
a spin-active interface. A “-” indicates that no odd-frequency pairing is
present.

Interface FZ-SC FE-SC TI-SC

Not spin active T T —

Spin-dep. phases T & S T T

Spin flip T T —

Spin-dep. phases & spin flip T & S T & S T

due to spin-dependent phases, even without spin flips, while
spin-singlet pairing can only be induced in the FE in the pres-
ence of both spin-dependent phases and spin flips. For the TI,
the odd-frequency pairing must be spin-triplet.
We note that odd-frequency pairing has also been investigated

in buckled honeycomb systems possessing proximity-induced
superconductivity.[183] In contrast to the results presented in this
section, in that work the presence of the superconducting layer
was accounted for by adding a spin-singlet BCS order parameter
to the Kane–Mele Hamiltonian[190,191] and computing the on-site
order parameter self-consistently. For large doping, the authors
found that bulk odd-frequency intersublattice pairing emerges
when the sublattice symmetry is broken by, for example, an elec-
tric field perpendicular to the plane, similar to the odd-frequency
interband pairing found inmultiband superconductors.[192–197] At
low doping, when the low-energy states are localized at the edge
of the sample, the authors performed their analysis in real space
for different edge terminations, finding that odd-frequency pair-
ing arises generically, even in the absence of an external field.
In the case of the zig-zag edge termination, this was due to the
asymmetry between the two sublattices at the edge.[183] In the case
of arm chair terminations, the odd-frequency pairing was due to
the asymmetry between every other pair of sublattices.[183] In both
cases the odd-frequency pairing arises due to an inhomogeneity
of the order parameter which naturally occurs in such finite-size
systems. This phenomenonwas also studied in the 2D surfaces of
3D topological insulators in the presence of an inhomogeneous
superconducting order parameter,[180] finding qualitatively simi-
lar results.
To conclude this subsection we note that the pair amplitudes

given by both Equations (22) and (46) represent pairing between
electrons in the same 2D layer. However, when the vdW system
possessesmore than one normal layer, interlayer pairing can also
be important, as investigated in ref. [198]. In that work, a simi-
lar analysis to the one leading to Equations (22) was performed
for a bilayer system coupled to a superconducting layer. The au-
thors explicitly investigated the possibility of interlayer pairing.
Interestingly, the authors found that, in general, because tunnel-
ing between adjacent layers dominates, an asymmetry emerges
between the induced gaps on the two layers. This asymmetry
leads directly to odd-frequency interlayer pairing in such vdW
heterostructures,[198] similar to phenomena studied inmultiband
superconductors,[192–197] double quantum dots,[199,200] and double
nanowires.[201,202]

Figure 10. a) Fermi surfaces ofmonolayerNbSe2. The blue (green) FSs are
the NbSe2FSs for spin up (down) respectively, the black circle shows the
position of the graphene Dirac point as 𝜃 is varied between 0 and 360◦.
The red circles delimit the region within which the graphene FS is con-
fined as the twist angle is varied. b) Low energy band structure, in red,
of a graphene-NbSe2systems obtained from ab-initio calculations includ-
ing relativistic corrections for a commensurate stacking corresponding
to 𝜃 = −65.2◦. The blue lines show the low energy bands of an isolated
graphene layer with doping corresponding to the charge transfer occur-
ring when graphene is place on NbSe2. Adapted with permission from
Phys. Rev. B. 99, 235404 (2019)

5.2. Proximity Induced Ising Pairing

We now focus on the set of superconductor-based vdW systems
in which the superconducting layer is a TMD monolayer. One
of the key features of superconducting TMD monolayers is that
the superconducting state is extremely robust against in-plane
magnetic fields: superconductivity survives for magnetic fields
much larger than the Pauli paramagnetic limit. This is due to the
strong spin-splitting of the bands at the Fermi surface in metallic
monolayer TMDs induced by strong SOC and a lack of inversion
symmetry. These conditions favor a particular spin orientation
of the Cooper pairs and the resulting superconducting pairing is
termed Ising pairing.[203,204]

The most commonly studied superconducting TMD is
NbSe2.

[203,204] The lattice structure is the same as the one shown
in Figure 8a. In its monolayer form the normal state spectrum
of NbSe2has Fermi pockets around the Γ point, and around the
corners (K and K′ points) of the BZ, as shown in Figure 10a. As
the figure shows, the Fermi surfaces are spin-split due to SOC
and broken inversion symmetry. The splitting of the Fermi sur-
face is much stronger for the K and K′ pockets than for the Γ
pocket given that, at the Γ point, the k and −k states coincide. As
a consequence, in the superconducting state, the pairing at the
K and K′ pockets is much more robust against external in-plane
magnetic fields than at the Γ pocket. Such a difference is hard
to detect experimentally in isolated monolayers of NbSe2given
that even when the Zeeman term due to an in-plane magnetic
field is large enough to completely suppress the superconduct-
ing gap at the Γ pocket, the superconductivity arising from the
states around the K (K′) pockets survives and therefore prevents
the use of transport measurements to observe the breakdown of
the superconducting state at the Γ pocket.
In vdW systems formed by one monolayer of a material such

as NbSe2and another, non-superconducting layer we can expect
that the superconducting pairing induced by proximity in the
normal layer will retain some of the properties of the pairing
in NbSe2and, in particular, its Ising nature. A natural candidate
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Figure 11. a) Induced superconducting gap, Δind, into the graphene layer
as a function of the twist angle. b)Δind as a function of Zeeman field Vz The
solid lines (circles) show the results for values of 𝜃 for which graphene’s
FS overlaps with NbSe2’s FS pockets around the K (K′). The dashed lines
(squares) show the results for values of 𝜃 for which graphene’s FS overlaps
with NbSe2’s FS pocket around the Γ point. Adapted with permission from
Phys. Rev. B. 99, 235404 (2019)

system to combine with NbSe2is graphene. As pointed out above,
there is a large mismatch between graphene’s and TMD’s lat-
tice constants and so one would expect that no significant hy-
bridization between the graphene’s and the NbSe2’s states could
take place. However, for some twist angles the Fermi pockets of
NbSe2are large enough to overlap with graphene’s Dirac points.
This is displayed in Figure 10a where the green and blue lines
show the spin-split Fermi surfaces of NbSe2, and the black cir-
cle the position of graphene’s Dirac points as the twist angle 𝜃
is varied between 0 and 360◦. For a range of angles, ±7.2◦,[205]
around 0◦ (and multiples of 60◦) the Dirac points intersect the K
(orK′) Fermi pocket of NbSe2, and for a range of angles,±3.9◦,[205]
around 21.9◦ (and multiples of 60◦) the Dirac points intersect the
Γ Fermi pocket of NbSe2. As a consequence, graphene can be
used to probe the differences between the electronic states of the
different Fermi pockets of NbSe2, including properties of the su-
perconducting pairing.[206]

Ab initio calculations[205] show that when placed on
NbSe2graphene becomes hole doped, Figure 10b, so that
the Fermi energy in the graphene layer is ≈ 400 meV below the
Dirac point. These calculations also show[205] that the interlayer
tunneling between the two systems is of the order of 20 meV
and that this value, and the amount of charge transfer do not
depend significantly on the twist angle. Using these values we
can construct a continuum model as described in Section 2
to obtain the low-energy properties for generic values of the
twist angle.
For twist angles such that the Fermi surface of graphene

touches one of the Fermi pockets of NbSe2, superconducting pair-
ing can be induced in the graphene layer. Figure 11a shows the
value of the induced gap,Δind, in the graphene layer as a function
of the twist angle. The red circles indicate the values of Δind for
the cases when the graphene FS touches the K (K′) Fermi pocket
of NbSe2. The blue squares denote the cases when the graphene
FS touches the NbSe2Fermi pocket around the Γ point. These re-
sults show that in superconductor-based vdW systems such as
NbSe2-graphene heterostructures, the size of the gap induced by
proximity can be strongly tuned by varying the twist angle.
Figure 11b shows how the proximity-induced superconduct-

ing gap in the graphene layer depends on the strength of a Zee-
man term, Vz, due to the presence of an in-plane magnetic field,

for different values of the twist angle. The solid lines with circles
show the results for values of 𝜃 such that the low energy states in
graphene hybridize with the low energy states close to the K (K′)
point in NbSe2. The dashed lines with squares show the results
for the cases where the graphene FS touches the NbSe2Fermi
pocket at the Γ point. We see that in the first case the induced su-
perconducting gap is much more robust against the presence of
an in-plane field than in the second case. This is a consequence of
the fact that, for the first case, the graphene is effectively probing
the superconducting gap of NbSe2at the K (K′) where the spin-
splitting due to the SOC is much stronger than for the pocket
around the Γ pocket, and therefore the Ising nature of the pair-
ing is much more pronounced.
The results of Figure 11b show that in vdW systems like

graphene-NbSe2, the Ising character of the induced supercon-
ducting pairing can be tuned via the twist angle. In addition, they
show that in these types of structures graphene can be used to
probe the relative strength of the gaps on different parts of the
FS of the substrate, and the robustness of these gaps to external
magnetic fields.

6. Conclusions

In this article we have reviewed recent work on heterogenous van
der Waals systems in which one of the components has strong
spin-orbit coupling. The field of van der Waals systems is now
very large and so we have restricted the discussion to a few exem-
plary vdW systems.
We first presented the general effective model to obtain the

low energy electronic spectrum for a generic stacking configu-
ration. The model relies on parameters that must be obtained
via ab initio calculations, or, when possible, directly from exper-
imental measurements. We then discussed, in detail, the case
of a van der Waals system formed by coupling a single layer
of graphene to the surface of a three dimensional strong topo-
logical insulator. We discussed how the hybridization between
the states in these two systems strongly enhances the spin-orbit
coupling of the graphene layer. We then considered the elec-
tronic transport of graphene-TI bilayers and showed how the en-
hancement of the spin-orbit coupling in graphene, and the ad-
ditional screening of charge impurities by the graphene layer,
can lead to a considerable amplification of spin-dependent ef-
fects, such as the Edelstein effect.We briefly discussed the case of
heterostructures formed by graphene and semiconducting tran-
sition metal dichalcogenides.
In the second part of the work we discussed the case of het-

erogenous vdW systems in which one of the components is su-
perconducting. Given the scope of this special issue, particular
focus was placed on systems in which odd-frequency pairing can
be realized. We first presented a general analysis allowing the
identification of conditions for realizing odd-frequency pairing
based on a combination of proximity-induced superconductiv-
ity and spin-orbit coupling in superconductor-based vdW sys-
tems. Based on this general treatment, we observed that vdW sys-
tems with spin-orbit coupling are ideal systems for realizing odd-
frequency pair correlations. A distinct advantage over bulk super-
conductors with a similar degree of spin-orbit coupling is that
the direction of the field describing the spin-orbit coupling and
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that of the dk vector describing the spin configuration of a triplet
superconductor can be completely different since they belong to
different layers in the vdW system. After this general discussion,
we examined a concrete example in which this condition can be
realized: a vdW system formed by a monolayer transition metal
dichalcogenide and a 2D superconductor with Rashba spin-orbit
coupling. We then discussed the case of vdW systems in which
the interface between the superconducting layer and the normal
layer causes the interlayer tunneling to be spin-dependent.We re-
viewed the conditions under which such a “spin-active” interface
can lead to the formation of odd-frequency superconducting pair-
ing. Finally, we discussed the case in which the superconducting
layer exhibits Ising superconductivity, as in monolayer NbSe2. In
particular, we saw that in graphene-NbSe2vdW systems, the size
of the superconducting gap and its robustness against in-plane
magnetic fields, strongly depend on the relative twist angle be-
tween the layers.
Our brief survey of the field shows that van der Waals het-

erostructures in which spin-orbit coupling is present constitute a
very interesting class of systems, both from a fundamental point
of view, and for technological applications. The freedom in the se-
lection of the layers forming the heterostructure, combined with
the ability to control the stacking configuration, mean that the
number of vdW systems with spin-orbit that can be realized, and
that have not been studied yet is very large. This presents the op-
portunity to realize vdW systemswith spin-orbit coupling exhibit-
ing novel spin dependent transport properties or in which known
spintronics effects can be optimized and deployed effectively in
technological applications. A class of vdW systems with spin-
orbit coupling that would be very interesting to study, and that is
still largely unexplored, is the one in which the presence of spin-
orbit is coupled to strong electron–electron correlations. Such
coupling could perhaps be realized in vdWheterostructures com-
bining twisted bilayer graphene and layers with strong spin-orbit
coupling. The study of the response to several external probes, in
particular time-dependent probes, of the type of vdW systems de-
scribed in this survey is still largely unexplored. Another interest-
ing direction is the study of vdW systemswith spin-orbit coupling
in which one of the constituents is a nanostructure, such as het-
erostructures formed by graphene nanoribbons and substrates
with strong spin-orbit coupling. These structures could allow the
realization of nano-devices with tunable spin-orbit coupling.
One of the challenges to understand the physics of vdW sys-

tems, and to use them in applications, is the correct characteri-
zation of the effects of disorder. For some vdW systems the dom-
inant source of disorder is still unknown. In some vdW struc-
tures the twist angle is not spatially homogenous and the effect
of the randomness of the twist angle on the transport properties
is not known yet. Also still unknown is why in graphene-based
structures the experimentally measured spin-relaxation time is
orders of magnitude smaller than the theoretical predictions. In
the case of superconductor-based vdW systems, a major driver
in the field has been the engineering of exotic superconducting
states, in particular those which possess unconventional symme-
tries like odd-frequency pairing. Two major barriers to under-
standing these exotic states are the scarcity of unambiguous ex-
perimental signatures, and the difficulty of realizing systems in
which the odd-frequency pairing dominates the even-frequency.
While these barriers have been overcome in particular experi-

mental setups, as discussed in Section 5.1, a general solution to
the problem is still lacking.
We emphasize that one of the most interesting features of van

der Waals systems is that the choice of layers is, to a large ex-
tent, not constrained by chemistry. On top of the flexibility in the
choice of constituent layers, recent experimental developments
demonstrating that the relative twist angle between layers can
be controlled within a fraction of degree allow for an incredi-
ble amount of tunability of the interlayer coupling. As we have
seen in our discussion of just a limited sample of possible van
der Waals systems with spin-orbit coupling, the ability to com-
bine layers with different properties can be used to realize and
control exotic superconducting states and engineer systems with
strong spin-dependent transport effects. By continuing to study
the myriad combinations of the growing number of 2D crystals,
we expect many more novel and surprising electronic properties
will be discovered in van der Waals structures.
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[145] V. L. Berezinskǐı, Sov. J. Exper. Theor. Phys. Lett. 1974, 20, 287.
[146] T. R. Kirkpatrick, D. Belitz, Phys. Rev. Lett. 1991 66, 1533.
[147] D. Belitz, T. R. Kirkpatrick, Phys. Rev. B 1992, 46, 8393.
[148] A. Balatsky, E. Abrahams, Phys. Rev. B 1992, 45, 13125.
[149] P. Coleman, E. Miranda, A. Tsvelik, Phys. Rev. Lett. 1993, 70, 2960.
[150] P. Coleman, E. Miranda, A. Tsvelik, Phys. Rev. Lett. 1995, 74, 1653.
[151] D. Belitz, T. R. Kirkpatrick, Phys. Rev. B 1999, 60, 3485.
[152] E. Abrahams, A. Balatsky, J. Schrieffer, P. B. Allen, Phys. Rev. B 1993,

47, 513.
[153] P. Coleman, E. Miranda, A. Tsvelik, Phys. Rev. B 1994, 49, 8955.
[154] O. Dolgov, V. Losyakov, Phys. Lett. A 1994, 190, 189.
[155] R. Heid, Z. Phys. B: Condens. Matter 1995, 99, 15.
[156] F. Bergeret, A. Volkov, K. Efetov, Phys. Rev. Lett. 2001, 86, 4096.
[157] K. Halterman, P. H. Barsic, O. T. Valls, Phys. Rev. Lett. 2007, 99,

127002.
[158] T. Yokoyama, Y. Tanaka, A. A. Golubov, Phys. Rev. B 2007, 75, 134510.
[159] M. Houzet, Phys. Rev. Lett. 2008, 101, 057009.
[160] M. Eschrig, T. Löfwander, Nat. Phys. 2008, 4, 138.
[161] J. Linder, T. Yokoyama, A. Sudbø, Phys. Rev. B 2008, 77, 174514.
[162] C. Triola, E. Rossi, A. V. Balatsky, Phys. Rev. B 2014, 89, 165309.
[163] F. Crépin, P. Burset, B. Trauzettel, Phys. Rev. B 2015, 92, 100507.
[164] V. Petrashov, V. Antonov, S. Maksimov, R. S. Shaikhaidarov, JETP

Lett. 1994, 59, 551.
[165] M. Giroud, H. Courtois, K. Hasselbach, D.Mailly, B. Pannetier, Phys.

Rev. B 1998, 58, R11872.
[166] V. Petrashov, I. Sosnin, I. Cox, A. Parsons, C. Troadec, Phys. Rev. Lett.

1999, 83, 3281.
[167] J. Aumentado, V. Chandrasekhar, Phys. Rev. B 2001, 64, 054505.
[168] J. Zhu, I. N. Krivorotov, K. Halterman, O. T. Valls, Phys. Rev. Lett.

2010, 105, 207002.
[169] A. Di Bernardo, S. Diesch, Y. Gu, J. Linder, G. Divitini, C. Ducati,

E. Scheer, M. G. Blamire, J. W. Robinson, Nat. Commun. 2015, 6,
8053.

[170] A. Di Bernardo, Z. Salman, X. L.Wang,M. Amado,M. Egilmez,M.G.
Flokstra, A. Suter, S. L. Lee, J. H. Zhao, T. Prokscha, E. Morenzoni,
M. G. Blamire, J. Linder, J. W. A. Robinson, Phys. Rev. X 2015, 5,
041021.

[171] Y. Tanaka, A. A. Golubov, Phys. Rev. Lett. 2007, 98, 037003.
[172] Y. Tanaka, Y. Tanuma, A. Golubov, Phys. Rev. B 2007, 76, 054522.
[173] J. Rowell, W. McMillan, Phys. Rev. Lett. 1966, 16, 453.
[174] J. Rowell, Phys. Rev. Lett. 1973, 30, 167.
[175] L. Alff, H. Takashima, S. Kashiwaya, N. Terada, H. Ihara, Y. Tanaka,

M. Koyanagi, K. Kajimura, Phys. Rev. B 1997, 55, R14757.

[176] M. Covington, M. Aprili, E. Paraoanu, L. Greene, F. Xu, J. Zhu, C. A.
Mirkin, Phys. Rev. Lett. 1997, 79, 277.

[177] J. Wei, N. C. Yeh, D. Garrigus, M. Strasik, Phys. Rev. Lett. 1998, 81,
2542.

[178] J. Linder, Y. Tanaka, T. Yokoyama, A. Sudbo, N. Nagaosa, Phys. Rev.
Lett. 2010, 104, 067001.

[179] J. Linder, A. M. Black-Schaffer, A. Sudbo, Phys. Rev. B 2010, 82,
041409.

[180] A. Black-Schaffer, A. Balatsky, Phys. Rev. B 2012, 86, 144506.
[181] A. Black-Schaffer, A. Balatsky, Phys. Rev. B 2013, 87, 220506(R).
[182] F. Parhizgar, A. M. Black-Schaffer, Phys. Rev. B 2014, 90, 184517.
[183] D. Kuzmanovski, A.M. Black-Schaffer, Phys. Rev. B 2017, 96, 174509.
[184] M. Rahimi, A. Moghaddam, C. Dykstra, M. Governale, U. Zülicke,

Phys. Rev. B 2017, 95, 104515.
[185] M. R. Aliabad, M. H. Zare, Phys. Rev. B 2018, 97, 224503.
[186] J. Linder, A. Sudbo, T. Yokoyama, R. Grein, M. Eschrig, Phys. Rev. B

2010, 81, 214504.
[187] L. P. Gor’kov, E. I. Rashba, Phys. Rev. Lett. 2001, 87, 037004.
[188] J. Linder, T. Yokoyama, A. Sudbø, M. Eschrig, Phys. Rev. Lett. 2009,

102, 107008.
[189] J. Linder, A. Sudbø, T. Yokoyama, R. Grein, M. Eschrig, Phys. Rev. B

2010, 81, 214504.
[190] F. D. M. Haldane, Phys. Rev. Lett. 1988, 61, 2015.
[191] C. L. Kane, E. J. Mele, Phys. Rev. Lett. 2005, 95, 226801.
[192] A. M. Black-Schaffer, A. V. Balatsky, Phys. Rev. B 2013, 88, 104514.
[193] Y. Asano, A. Sasaki, Phys. Rev. B 2015, 92, 224508.
[194] L. Komendová, A. V. Balatsky, A.M. Black-Schaffer, Phys. Rev. B 2015,

92, 094517.
[195] L. Komendová, A. M. Black-Schaffer, Phys. Rev. Lett. 2017, 119,

087001.
[196] Y. Asano, A. A. Golubov, Phys. Rev. B 2018, 97, 214508.
[197] C. Triola, A. M. Black-Schaffer, Phys. Rev. B 2018, 97, 064505.
[198] F. Parhizgar, A. M. Black-Schaffer, Phys. Rev. B 2014, 90, 184517.
[199] B. Sothmann, S. Weiss, M. Governale, J. König, Phys. Rev. B 2014,

90, 220501.
[200] P. Burset, B. Lu, H. Ebisu, Y. Asano, Y. Tanaka, Phys. Rev. B 2016, 93,

201402.
[201] H. Ebisu, B. Lu, J. Klinovaja, Y. Tanaka, Prog. Theor. Exp. Phys. 2016,

2016, 083I01.
[202] C. Triola, A. M. Black-Schaffer, Phys. Rev. B 2019, 100, 024512.
[203] M. M. Ugeda, A. J. Bradley, Y. Zhang, S. Onishi, Y. Chen, W. Ruan,

C. Ojeda-Aristizabal, H. Ryu, M. T. Edmonds, H.-Z. Tsai, Nat. Phys.
2015, 12, 92.

[204] X. Xi, Z. Wang, W. Zhao, J. H. Park, K. T. Law, H. Berger, L. Forr, J.
Shan, K. F. Mak, Nat. Phys. 2015, 12, 139.

[205] Y. S. Gani, H. Steinberg, E. Rossi, Phys. Rev. B 2019, 99, 235404.
[206] T. Dvir, M. Aprili, C. H. L. Quay, H. Steinberg, Nano Lett. 2018, 18,

7845.

Ann. Phys. (Berlin) 2020, 532, 1900344 © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1900344 (17 of 17)


