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In recent years experimentalists have been able to clearly show that several materials, such as MgB2
1,2,

iron-based superconductors3, monolayer NbSe2
4,5, are multiband superconductors. Superconducting

pairing in multiple bands can give rise to novel and very interesting phenomena. Leggett modes6

are exemplary of the unusual effects that can be present in multiband superconductors. A Leggett
mode describes the collective periodic oscillation of the relative phase between the phases of the
superconducting condensates formed by electrons in different bands. It can be thought of as the
mode arising from an inter-band Josephson effect. The experimental observation of Leggett modes
is challenging for several reasons: (i) Multiband superconductors are rare; (ii) they describe charge
fluctuations between bands and therefore are hard to probe directly; (iii) their mass gap is often larger
than the superconducting gaps and therefore are strongly overdamped via relaxation processes into
the quasiparticle continuum. In this work we show that Leggett modes, and their frequency, can
be detected unambigously in a.c. driven superconducting quantum interference devices (SQUIDs).
We then use the results to analyze the measurements of a SQUID based on Cd3As2, an exemplar
Dirac semimetal, in which superconductivity is induced by proximity to superconducting Al. The
experimental results show the theoretically predicted unique signatures of Leggett modes and therefore
allow us to conclude that a Leggett mode is present in the two-band superconducting state of Dirac
semimetal (DSM) Cd3As2.

Let us consider a system with two bands crossing the Fermi energy. In the presence of superconducting pairing the
ground state of the system can be characterized by two complex superconducting order parameters ∆i = |∆i|eiφi for
band i = 1 and i = 2, as shown schematically in Fig. 1 (a). In addition to collective modes associated to oscillations
of the amplitude and phase of the individual order parameters, Leggett pointed out6 that an additional collective
mode describing oscillations of the relative phase φ = φ1−φ2 could be present. In the ideal case, the dynamics of the
Leggett mode is described by the effective Lagrangian

L = (1/2)C12(~/2e)2(dφ/dt)2 + (~/2e)I12 cos(φ− φ0) (1)

where C12 is the interband capacitance, e is the electron’s charge, I12 the effective interband critical Josephson
current6, and φ0 the equilibrium value of φ. From (1) we obtain that when φ−φ0 � 1 φ will oscillate with frequency

ωL =
√

(2e/~)I12/C12 around φ0. The interband nature of the charge oscillations associated with the Leggett mode
make its detection challenging. So far, using spectroscopy techniques, signatures of a Leggett mode have been observed
in MgB2

7–11, and, more recently, in a Fe-based superconductor12. Using an approach of limited applicability, it had
been theorized that in Josephson junctions (JJs) in which one lead is formed by a single-band superconductor and
the other by a two-band superconductor, signatures of a Leggett mode could be present13. Here, using a different
method, we show that the presence of a Leggett mode can induce robust qualitative features in a SQUID in which all
the leads are formed from the same multi-band superconducting material, and verify experimentally the presence of
such signatures in a SQUID based on the superconducting DSM Cd3As2.

A SQUID, see Fig. 1 (b), is formed by two Josephson junctions connected in parallel and encircling a finite size
area. Let θi ≡ φiR − φiL be the difference between the superconducting order parameter in the right and left lead for
band i. We then have that the current across the JJ’s leads, for a JJ with low-medium transparency14, is given by
I = I1 sin(α1θ1) + I2 sin(α2θ2) where Ii is the critical supercurrent for band i, and αi is equal to 1 for a standard JJ,
and 1/2 for a topological JJ15–17. For biased high transparency topologically trivial JJs, Landau-Zener transitions
can induce a current-voltage response equivalent to a topological junction18.

To understand the effect of a Leggett mode on the dynamics, and voltage-current (V-I) characteristic, of a JJ,
we first present a simplified analysis of a voltage-biased JJ. A rigorous analysis of the realistic case of a current-
biased JJ is presented later, see also the SI19. In presence of a voltage V across the JJ’s leads, the phases θi
evolve over time according to the equations dθi/dt = 2eV/~. The dynamics of the relative phase φ can induce
oscillations in the phase difference ψ ≡ (θ1 − θ2)/2. Let φR ≡ φR1 − φR2 , φL ≡ φL1 − φL2 , Fig. 1 (c), so that

ψ = (φR − φL) = ψ0 + ψ̃(t), where ψ0 is the equilibrium value of ψ, and ψ̃(t) the time dependent part. We
can write θ1 = θA + ψ, θ2 = θA − ψ, with θA = (θ1 + θ2)/2. Notice that dθA/dt = 2eV/~. We consider the
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Figure 1. Leggett modes in SQUIDs. a Schematic showing the relative phase φ between the two superconducting order
parameters. b SQUID. The boxes represent indvidual JJs, whose effective RCJS model is shown in d. c Diagram showing the
superconducting phases across a JJ.

case when V (t) = Vdc + Vac cosωt. When the Leggett mode is driven, directly or indirectly, by a periodic drive,

we can assume ψ̃ ≈ Âω sin(ωt), with Âω ≈ A0ΓLω/((ω
2 − ω2

L)2 + Γ2
Lω

2) the amplitude of the mode and ΓL its

broadening. With this assumption we obtain θ1(t) = θ0 + (2e/~)Vdct + (2e/~)(Vac/ω) sin(ωt) + ψ0 + Âω sin(ωt),

θ2(t) = θ0 +φ0 +(2e/~)Vdct+(2e/~)(Vac/ω) sin(ωt)−ψ0− Âω sin(ωt), where θ0 is an initial phase. Let’s first consider

the case then ω 6= ωL and so Âω ≈ 0. In this case we obtain

I =

∞∑
n=0

(−1)n [I1Jn(α1(2e/~)Vac/ω) sin(θ0 + ψ0 + α1(2e/~)Vdct− nωt) +

I2Jn(α2(2e/~)Vac/ω) sin(θ0 − ψ0 + α2(2e/~)Vdct− nωt)] (2)

where n is an integer and Jn(x) is the n-th Bessel function of the first kind. The d.c. current will be zero unless
Vdc = (~/2e)nω/αi, in which case the current exhibits so called Shapiro spikes20. For the experimentally more relevant
case when the JJs is current biased the Shapiro spikes correspond to steps, Shapiro steps, for the d.c. voltage. If
either α1 or α2 is equal to one we have Shapiro spikes for all integer values n. If both α1 and α2 are equal to 1/2
Eq. (2) shows that we have Shapiro spikes only when n is an even integer. In the non-ideal case, it is possible that
also in this case spikes will be present for odd n21. Equation (2) shows that in general, regardless of the values of αi,

and the phase difference φ0, in the limit when Âω ≈ 0 we cannot have a suppression of the even steps alone. The
reason is that when Âω ≈ 0 the driving a.c. term Vac/ω) sin(ωt) for θ1 is in phase with the driving term for θ2.

In the limit when ω ≈ ωL so that ÂωL
� Vac/ω instead of Eq. (2) we obtain:

I =

∞∑
n=0

(−1)n
[
I1Jn(α1ÂωL

) sin(θ0 + ψ0 + α1(2e/~)Vdct− nωLt) +

(−1)nI2Jn(α2ÂωL
) sin(θ0 − ψ0 + α2(2e/~)Vdct− nωLt)

]
(3)

When α1 = α2 = 1, depending on the value of ψ0 we can have suppression of the odd or even spikes. For ψ0 = 0 we
have suppression of the odd steps. In this case for ω ≈ ωL the Shapiro steps’ structure is qualitatively the same as the
one obtained at low frequencies and powers in the presence of a topological superconducting channel (α1 = α2 = 1/2),
or Landau-Zener processes in highly transparent junctions18. For small ωL and non-negligible ΓL it might be difficult
to pinpoint reliably the cause of the missing odd-Shapiro steps. However, for the case when ψ0 = π/2 we have that
Eq. (3) leads to a suppression of the even Shapiro spikes, a phenomenon that cannot be attributed to the topological
nature of the JJ, or Landau-Zener processes. A phase difference ψ0 6= 0 can be present, for example, due to strong
spin-orbit coupling that causes the spin textures on the two bands to be different. In the remainder we assume
α1 = α2 = 1.

To describe the dynamics of an a.c. current-biased 2-bands JJs we use a resistively and capacitively shunted junction
(RCSJ) model22. We assume that the external leads couple strongly to the states in band 1 and weakly to the states
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in band 2. This situation is realized, for instance, when placing a lead on the surface of a DSM: the states of the lead
couple strongly to the DSM’s surface states and weakly to the DSM’s bulk states. In this scenario the supercurrent
in the bulk band (band 2) is mediated by intraband processes. The capacitance between the two leads is very small
compared to the normal resistances Ri across the leads and so it can can be neglected. Conversely, for the inter
band charge flow, within the same lead, we can neglect the resistive channel considering the non-negligible inter band
capacitance C12. The resulting effective RCSJ model is shown in Fig. 1 (d).

In presence of the current bias IB = Idc + Iac cos(ωt), the dynamics of the RCSJ model shown in Fig. 1 (c) is
described by the equations19

dθA
dτ

= ξ
dψ

dτ
+ iB(τ)− sin θ1 − i2 sin θ2 (4)

d2ψ̃

dτ2
+
ω2
L

ω2
J

ψ̃ ≈ Â0iac cos(ω̂τ) (5)

where ωJ ≡ 2eRI1/~, τ ≡ ωJ t R = R1R2/(R1 +R2), ξ ≡ (R1−R2)/(R1 +R2), ω̂ ≡ ω/ωJ iB ≡ IB/I1 i2 ≡ I2/I1, and

Â0 ≡ ω2
LR1/(ω

2
J i12(R1 + R2)). In the remainder we set ωL/ωJ = 0.005, ΓL/ωL = 7.5 · 10−5, Â0 = 0.0045, ξ = −0.6,

i2 = 1.5,and β = 0.05π.
The dynamics of the SQUID can be obtained starting from Eqs. (4), (5) for each of the two JJs. In the remainder

we will denote by X
(j)
i the quantity X for band i in arm j of the SQUID, see Fig. 1 (c). We assume the SQUID

to be symmetric: the parameters entering the JJs’ RCSJ model, and the self inductance L, are assumed to be the

same for the left and right arm of the SQUID. For each band the phase difference η ≡ (θ
(2)
i − θ

(1)
i )/2π must be

equal to Φext/Φ0 + m + β(i(1) − i(2)), where Φext is the external flux threading the SQUID, Φ0 = h/2e, m is an
integer, β = I1L/Φ0, and i(j) = I(j)/I1 with I(j) the total current flowing through arm j. In the remainder we set

m = 0. In the limit in which L is small, so that β � 1, we can assume η = Φ̂ + βη̃ + O(β2)23, with Φ̂ = Φext/Φ0.
Using Eqs. (4), (5), current conservation, and the flux quantization for η, in the limit β � 1, in terms of the phases

θS ≡
∑
ij θ

(j)
i /4, ψ = ψ(1) = ψ(2) = ψ0+ψ̃(t), we find19 that the dynamics of the SQUID is described by the equations

dθS
dτ

= ξ
dψ

dτ
+

1

2
[iB − is (θs, ψ)] (6)

is(θs, ψ) = 2 cos(πΦ̂) [sin (θs + ψ) + i2 sin(θs − ψ)]− 2β sin2(πΦ̂)
[
sin(2(θs + ψ)) + i22 sin(2(θs − ψ)) + 2i2 sin(2θs)

]
(7)

in conjunction with Eq. (5). Equation (7) shows that the SQUID’s dynamics is 2Φ0-periodic with respect to Φext.

Figure 2. Shapiro steps for a SQUID in presence of a Leggett mode when Φext=0. V-I curves for the case when
f = fL and ψ0 = 0, a, and ψ0 = π/2, a. c Histogram of Shapiro steps as a function of ac frequency f with power Iac = 0.05I1.

Using Eqs. (6), (7), (5) we obtain V (t) = (~/2e)dθs/dt and then Vdc = V̄ = limtf→∞(1/tf )
∫ tf
0
V (t)dt. Let’s first

consider Φ̂ = 0 mod 2. For |ω − ωL| � 1, the dependence of Vdc with respect to Idc exhibits the standard Shapiro
steps19: all steps if either α1, or α2 are equal to 1, only even steps if α1 = α2 = 1/2,19. For ω = ωL, ψ0 = 0, and
α1 = α2 we have that the odd steps are strongly suppressed, see Fig. 2 (a), so that the structure of the Shapiro
steps resembles the one expected for a topological JJ for which a channel with α = 1/2 dominates. However, for
ψ0 = π/2, and α1 = α2 = 1, we have the unusual situation that only the even Shapiro steps are suppressed, as shown
in Fig. 2 (b). This behavior is present as long as ω = 2πf is within the inverse lifetime, ΓL, of the Leggett mode
frequency fL = ωL/2π. When ~ωL = ~2πfL < ∆sc we can expect ΓL to be quite small. Figure 2 (c) shows the width
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of the steps, W , as a function of Vdc and ac frequency f assuming ΓL = 0.05fL. We see that for |f − fL| � ΓL
the even steps are suppressed while the odd steps are strong, and that for f far from the resonance we recover a
voltage-current profile in which all the steps are present (apart from small corrections due to higher harmonics).

We can investigate the effect of the Leggett mode on the Shapiro steps when the SQUID is threaded by a nonzero
magnetic flux Φext. For the case when Φ̂ 6= 0 mod 2, we first note that for Φ̂ = 1 mod 2 the second term vanishes.
In this case we find that the SQUID V-I curve exhibits the same Shapiro steps as for the case Φ̂ = 0. When Φext
is a half-integer of Φ0 the first term on the r.h.s. of Eq. (7) vanishes and the term proportional to β affects the
dynamics of the SQUID. In this case, when ψ ≈ 0, the factor of 2 in the argument of the sine causes the appearance
of half-integer Shapiro steps, as in standard SQUIDs24, when α1 = α2 = 1, and the appearance of the odd Shapiro
steps when α1 = α2 = 1/2.

Figure 3. Shapiro steps for a SQUID in presence of a Leggett mode when Φext 6= 0 a Shapiro steps for a SQUID
when f = fL and Φext = Φ0/2. b Colormap of Shapiro steps as a function of Φext. The different steps are labeled in white. c
Histogram of Shapiro steps as a function of ac frequency f .

When f ≈ fL so that ψ̃ is not negligible, and Φext is not a multiple of Φ0, the SQUID’s V-I features are difficult to
predict from a simple analysis of the equations. Numerically, for the case when f = fL, ψ0 = π/2, and Φext = Φ0/2
we find that the SQUID has a fairly unique V-I curve, as shown in Fig. 3. Contrary to the case of a single JJ the
odd step at V = (hf/2e) is absent, and a new fractional step at V = 3/2(hf/2e) appears together with a step at
V = 4(hf/2e), while the step at V = 3(hf/2e) survives. Figure 3 (b) shows the range of values of Φext around Φ0/2
for which these step structure is present, and Fig. 3 (c) shows how the step structure and the width of the steps
depend on the a.c. frequency f , for f ≈ fL, when Φext = Φ0/2.

The discussion above shows that when the equilibrium phase difference, ψ0, between the two superconducting
order parameters is 0 mod 2π, the microwave response of a SQUID in which an undamped Leggett mode is present,
for ω ≈ ωL is similar to one obtained when the single JJs forming the SQUID have a current phase relation that
is 4π periodic, either due to the presence of a topological superconducting channel, or Landau-Zener processes.
At the same, the analysis shows that when ψ0 ≈ π/2 the SQUID’s microwave response, both in the absence and
presence of an external magnetic flux Φext, exhibit unique qualitative features that cannot be attributed to topological
superconducting pairing or Landau-Zener processes.

In a Dirac semimetal (DSM) the bulk 3D conduction and valence electronic bands touch at isolated points, and a
projection of the spectral density onto a surface BZ reveals Fermi arcs connecting the bulk Dirac points25,26. DSM’s
with proximity-induced superconductivity are predicted to be able to realize exotic non-Abelian anyons that can
used to develop topologically-protected qubits27 and can be used in microwave single-photon detection for sensing
applications28–30. Another aspect DSMs that has received less attention in the literature concerns the multiband
properties of superconducting DSMs31,32. By placing a superconducting material on the surface of the Dirac semimetal
Cd3As2 superconducting pairing can be induced in Cd3As2

32. The pairing has been shown to be characterized by
two order parameters, ∆1, ∆2. In addition, recent experiments on single JJs formed by superconducting leads based
on Al/Cd3As2 have shown compelling signatures that at equilibrium the phase difference, θ1 − θ2, between the two
phases across the junction arising from the two superconducting order parameters is equal to π, implying ψ0 = π/233.
Motivated by these results and the theoretical analysis above we have investigated the microwave response of a SQUID
based on Al/Cd3As2. Details about the fabrication and measurement of the device can be found in the Methods section
and SI19.

At low frequencies, f < 9 GHz, and Φext = 0, the SQUID’s measured dV/dI exhibits peaks and valleys consistent
with the standard Shapiro steps’ structure (see SI19). However, for f = 9 GHz, for all the microwave powers values
considered, the first and third steps are clearly visible but the second step is strongly suppressed, see Fig. 3 (a).
Considering that our device shows no hysteretic features in the current-voltage characteristic19, and no evidence
of a bias-dependent normal resistance, mechanisms for missing Shapiro steps due to hysterisis34 or bias-dependent
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Figure 4. Shapiro steps for a SQUID formed by a superconducting Dirac semimetal. a Scans of the differential
resistance for an a.c. driven SQUID’s at various powers, f = 9 GHz, and B = 0. b Anomalous SQUID oscillations in the
d.c. regime occurring at integer multiples of Φ0/2, denoted by the dashed lines. c Colormap of differential resistance versus V̄
and B for f = 9 GHz and relative power -22 dBm. d Comparison between Shapiro steps at zero field and B = 1 mT which
corresponds to Φext ∼ Φ0/2. e Measured Shapiro step widths, left vertical axis, and differential resistance, right vertical axis,
vs B for f = 9 GHz. f Theoretical results for the Shapiro step widths vs flux threading the SQUID at Iac = 0.05Ic and f = fL.

resistance35 are not relevant. Based on the analysis above, we therefore conclude that the results shown in Fig. 3 (a)
can only be explained by considering the presence of a Leggett mode with fL ≈ 9 GHz, and ψ0 = π/2.

Figure 4 (b) shows the voltage across the SQUID as a function of the perpendicular magnetic field B in the d.c.
limit, Iac = 0. SQUID oscillations of periodicity ∼1.8 mT are observed, which correspond to an effective SQUID ring
area of ∼1.14 µm2. Enveloping the SQUID oscillations is the Fraunhofer diffraction pattern of the JJs. For B such
that Φext = Φ0/2 anomalous oscillations can also be observed. The presence of these oscillations is consistent with a
π-periodic supercurrent in each of the JJs forming the SQUID due the fact that ψ0 = π/2.

In Fig. 4 (c) we present as a color plot the measured dV/dI as a function of V̄ and B in the presence of an a.c.
component of the current with f = 9 GHz, and relative power -22 dB. In addition, to the periodicity of the Shapiro
steps with respect to B, with period consistent with the periodicity observed in the d.c. limit, Fig. 4 (b), we observe
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interesting features for B ≈ 1 mT corresponding to Φext = Φ0/2. To more clearly identify these features, in Fig. 4 (d)
we show the dV/dI traces for B = 0 and B = 1 mT. We see that for B = 1 mT, i.e., Φext = Φ0/2, both the first
and second Shapiro steps are suppressed and a 3/2 subharmonic step emerge, features that are remarkably consistent
with the theoretical results shown in Fig. 3. To better understand the evolution of the Shapiro steps’ structure with
Φext when f = 9 GHz, in Fig. 4 (e) we plot the measured width of the steps at V = hf/2e and V = (3/2)(hf/2e) as a
function of B. We see that when B ≈ 1 mT, Φext = Φ0/2, the width of the first step is suppressed whereas the width
of the 3/2 step is enhanced around B ≈ 1 mT. The evolution of the 1 and 3/2 steps with Φext is in good qualitative
agreement with the theoretical results, shown in Fig. 4 (f).

In conclusion, we have presented a theoretical analysis of the response of a SQUID to microwave radiation in the
presence of a Leggett mode, using an effective resistively and capacitively shunted junction model for Josephson
junctions formed by superconducting leads with two order parameters. We have shown that, when the a.c. current’s
frequency f is close to the frequency fL of the Leggett mode, the dc current-voltage characteristics of both a single
junction and a SQUID exhibit suppressed odd Shapiro steps if the equilibrium relative phase, ψ0, between the phases
of the two superconducting order parameters is zero, and strongly suppressed even Shapiro steps if ψ0 = π/2. In the
absence of hysteretic effects and spurious cavity resonances, the suppression of only the even-steps cannot be explained
using other mechanisms, such as the presence of channels for the JJs with a 4π-periodic current phase relation. In
addition, we have shown that for f ≈ fL, and ψ0 = π/2, the evolution of a SQUID’s Shapiro steps structure with the
magnetic flux Φext possess unique qualitative features. We have then presented experimental measurements taken
on a SQUID formed by Josephson junctions whose superconducting leads are formed by Al placed on top of the
Dirac semimetal Cd3As2. The results presented are consistent with Al inducing a two-band superconducting pairing
in Cd3As2, with a ψ0 = π/2 difference between the phases of the two superconducting order parameters, and the
presence of a Leggett mode with fL ≈ 9 GHz.

The theoretical and experimental results presented show that the SQUIDs’ response to microwave radiation can
be used to identify unambigously the presence of Leggett modes, especially when the equilibrium phase difference
between the phases of the superconducting order parameters is not zero. In addition, the results strongly suggest
that in a Dirac semimetal like Cd3As2 the multi-band superconducting state induced via proximity effect exhibits an
undamped Leggett mode. In this study, we used Cd3As2 as an exemplar Dirac Semimetal, but our results indicate
that underdamped Leggett modes may be present also in other superconducting Dirac semimetals.

Methods

Fabrication. Mechanical exfoliation is used to obtain flat and shiny Cd3As2 thin flakes of thickness ∼200 nm from
an initial bulk ingot material30, synthesized via a chemical vapor deposition method36. The SQUID structure is
fabricated by first depositing the Cd3As2 thin flake on a Si/SiO2 substrate with a 1 µm thick SiO2 layer. Next,
e-beam lithography is used to define 300 nm thick Al electrodes. Additional details about the device can be found
elsewhere33.
Measurements. To measure the sample resistance, a ∼11 Hz phase-sensistive lock-in amplifier technique is used
with an excitation current of 10 nA. To measure the differential resistance, a large direct current up to ±2 µA is
added to the ac current. The entire device is emmersed in a cryogenic liquid at a temperature of ∼0.25 K, well below
the devices superconducting transition temperature. To measure the microwave response of the device, an Agilent
83592B sweep generator is used to generate microwaves, which are conducted through a semirigid coax cable.
Simulations. The numerical integration of the dynamical equations have been performed using the adaptive Runge-
Kutta of order 4 and 5.
Data availability
The data that support the findings of this study are available within the paper and its Supplementary Information.

All the codes used to obtain the numerical results presented are available upon request.
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SUPPLEMENTAL MATERIAL

I. DYNAMICS OF A TWO-BANDS JOSEPHSON JUNCTION IN THE PRESENCE OF A LEGGETT
MODE

Let’s consider a Josephson junction (JJ) where each of the superconducting electrodes are two-band superconductors
with phases φ1, φ2. Let the intraband phase differences across the junction be θi = φRi −φLi . To describe the interband
dynamics in the JJ, we consider the resistively and capacitively shunted junction (RCSJ) model shown in Fig. 1 (d).
For the ac Josephson effect we have that the voltage V across a weak link, denoted by crosses in Fig. 1 (d), is given
by V = ~ϕ̇i/2e, where ϕ is the phase difference across the weak link of the superconducting order parameters. Let
φL = φL1 − φL2 , φR = φR1 − ψR2 and θi = φRi − φLi . From Kirchhoff’s voltage law applied to the loop formed by the
weak links in Fig. 1 (d) we obtain

φ̇L + θ̇2 − φ̇R − θ̇1 = 0 (S1)

and then θ̇2 − θ̇1 = φ̇R − φ̇L.
Let IL12, IR12 be the interband critical dc Josephson current on the left side and right side, respectively, of the circuit

shown in Fig. 1 (d) of the main text, and CL12, CR12 the left-side, right-side, interband capacitances. From charge
conservation we obtain

IL12 sinφL +
~
2e
CL12φ̈

L = I2 sin θ2 +
~

2eR2
θ̇2 (S2)

IR12 sinφR +
~
2e
CR12φ̈

R = −(I2 sin θ2 +
~

2eR2
θ̇2) (S3)

If we assume CL12 = CR12 ≡ C12 and IL12 = IR12 ≡ I12, it is clear that φR = −φL. Then, from Eq. (S1) we obtain

ψ ≡ θ1 − θ2
2

= φL = −φR. (S4)

Equation (S4) establishes the direct relation between phases across the Josephson junction, θi, and the phases φR, φL,
characterizing the Leggett modes in the two superconducting leads. In particular Eq. (S4) implies that the dynamics
of the Leggett modes will in general affect the dynamics of the phases across the JJ.

We now obtain the dynamics of the current biased JJ shown in Fig. 1 (d) taking into account the presence of a
Leggett mode. When a bias current IB is applied across the junction, charge conservation gives

IB = I1 sin θ1 + I2 sin θ2 +
V1
R1

+
V2
R2

(S5)

where Ii is the critical Josephson current for the ith band and Vi/Ri is the current through the resistive channel in
the ith band. Let θA ≡ (θ1 + θ2)/2. Considering Eq. (S4), we can write θ1 = θA + ψ, θ2 = θA − ψ and then

IB = I1 sin θ1 + I2 sin θ2 +
~

2eR

(
θ̇A − ξψ̇

)
(S6)

where R = R1R2/(R1 +R2) is the parallel resistance of the resistors R1 and R2, ξ = (R1 −R2)/(R1 +R2) quantifies
the asymmetry in resistance between the bands. Defining ωJ ≡ 2eRI1/~, τ ≡ ωJ t, we can write Eq. (S6) as

dθA
dτ

= ξ
dψ

dτ
+ iB − sin θ1 − i2 sin θ2 (S7)

where currents have been normalized with respect to I1: iB = IB/I1 and i2 = I2/I1. Equation (S7) is the key
equation to describe the behavior of the 2-band JJ, and SQUID (see next section), in the presence of a Leggett mode.
The key modification due to the Leggett mode is the term ξdψ/dτ . The evolution in time of ψ(t) depends on several
microscopic details that are beyond the level of the effective description used here. We have assumed ψ(t) to follow
the dynamics of a harmonic oscillator driven by a periodic term due to the microwave radiation. Below we show that,
in first approximation, this simplified evolution is also consistent with the RSCJ model shown in Fig. 1 (d).

We can rewrite Eq. (S3) in the form:

d2ψ

dτ2
+

Rω2
L

ω2
J i12(R1 +R2)

dψ

dτ
+
ω2
L

ω2
J

sinψ =
ω2
LR1

ω2
J ii2(R1 +R2)

[iB + (R2/R1)i2 sin(θA − ψ)− sin(θA + ψ)] . (S8)
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where i12 ≡ I12/I1, ωL =
√

(2e/~)I12/C12 is the Leggett mode’s frequency, and iB = idc + iac cos(ωτ) Equations (S7)
and (S8) completely define the dynamics of the two-bands JJ described by the effective RCJS circuit shown in
Fig. 1 (d). Eq. (S8) is equivalent to the equation for a damped, driven, oscillator; the right hand side of the equation
being the driving term. To qualitatively understand the effect of a resonant Leggett mode, in first approximation, we
can neglect the damping term proportional dψ/dτ , and the term idc + (R2/R1)i2 sin(θA − ψ) − sin(θA + ψ) on the

right hand side of the equation. Then by linearizing the sinψ around the equilibrium value ψ0 for ψ̃ ≡ ψ − ψ0 we
obtain the simple equation

d2ψ̃

dτ2
+
ω2
L

ω2
J

ψ̃ =
ω2
LR1

ω2
J ii2(R1 +R2)

iac cos(ω̂τ) (S9)

describing a harmonic oscillator periodically driven by a force of amplitude Â0iac, with Â0 ≡ ω2
LR1/(ω

2
J i12(R1 +R2)).

Here ω̂ ≡ ω/ωJ . In our calculations the effect of the damping term is taken into account by considering a finite
broadening, ΓL, of the Leggett mode’s resonance frequency.

II. DYNAMICS OF A SQUID FORMED BY TWO-BANDS SUPERCONDUCTING LEADS AND IN
THE PRESENCE OF A LEGGETT MODE.

In this section we derive the equations that we use to simulate the dynamics of a two-bands SQUID in presence of
a resonant Leggett mode. We assume the SQUID to be symmetric:

C
(1)
12 = C

(2)
12 ≡ C12; R

(1)
i = R

(2)
i ≡ Ri; I

(1)
i = I

(2)
i ≡ Ji;

I
(1)
12 = I

(1)
21 = I

(2)
12 = I

(2)
21 ≡ I12,

where X
(j)
i denotes quantity X in band i, and arm (j) of the SQUID. Normalizing as usual the currents with I1, from

charge conservation and magnetic flux quantization we have:

i(1) + i(2) = iB (S10)

i(1) − i(2) =
θ
(2)
i − θ

(1)
i

2πβ
− Φ̂

β
+
m

β
(S11)

where β ≡ I1L/Φ0, Φ̂ ≡ Φext/Φ0, and m is an integer that without loss of generality we can set equal to zero. For
the total current in arm (j) we have:

i(j) =
~

2eR1I1

dθ
(j)
1

dt
+

~
2eR2I1

dθ
(j)
2

dt
+ sin(θ

(j)
1 ) + i

(j)
2 sin(θ

(j)
2 ). (S12)

Let’s now define

ψ(1) ≡ θ
(1)
1 − θ

(1)
2

2
; ψ(2) ≡ θ

(2)
1 − θ

(2)
2

2
; η1 ≡

θ
(2)
1 − θ

(1)
1

2π
; η2 ≡

θ
(2)
2 − θ

(1)
2

2π
; θS =

1

4

∑
ij

θ
(j)
i . (S13)

Because the flux quantization condition is the same for both bands, we have η1 = η2 ≡ η, and ψ(1) = ψ(2) ≡ ψ. ψ is
the phase associated to the Leggett mode and its dynamics is given by Eq. (S9). By using Eq. (S12) to express i(j)

in Eqs. (S10), (S11) we obtain the following dynamical equations for θS and η

dθS
dτ
− ξ dψ

dτ
=
iB
2
− 1

2
is(θs, ψ, η) (S14)

2π
dη

dτ
= − η

β
+

Φ̂

β
+ id(θs, ψ, η) (S15)

where

is(θs, ψ, η) = sin θ
(1)
1 + sin θ

(2)
1 + i2[sin θ

(1)
2 + sin θ

(2)
2 ]

= sin(θS + ψ − πη) + sin(θS + ψ + πη) + i2[sin(θS − ψ − πη) + sin(θS − ψ + πη)]; (S16)

id(θs, ψ, η) = sin θ
(1)
1 − sin θ

(2)
1 + i2[sin θ

(1)
2 − sin θ

(2)
2 ]

= sin(θS + ψ − πη)− sin(θS + ψ + πη) + i2[sin(θS − ψ − πη)− sin(θS − ψ + πη)] (S17)
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is is the supercurrent fraction of the total current across the SQUID. In the limit β � 1 we can assume23

η = Φ̂ + βη̃ +O(β2). (S18)

From Eq. (S15), for η̃, we find:

η̃ = 2 sin(πΦ̂)[cos(θS + ψ) + i2 cos(θS − ψ)] +O(β)] (S19)

Replacing in the equation (S16) for is the expression for η obtained by combining Eqs. (S18), (S19), we obtain, to
linear order in β:

is(θs, ψ) =2 cos(πΦ̂)[sin(θS + ψ) + i2 sin(θS − ψ)]−
2β sin2(πΦ̂)[sin(2(θS + ψ)) + i22 sin(2(θS − ψ)) + 2i2 sin(2θS)]. (S20)

Notice that up to linear order in β is only depends on θS and ψ.
Equations (S14), (S20), and (S9) completely determine the dynamics of the SQUID. To numerically integrate these

non-linear differential equations we used an adaptive fourth-order Runge-Kutta method. The parameters of the model
used in the simulations are given in Table I.

ωL/ωJ ΓL/ωL Â ξ i2 β

0.005 7.5 · 10−5 4.5 · 10−3 -0.6 1.5 0.05π

TABLE I.

III. ADDITIONAL THEORETICAL RESULTS

In Fig. S1 we present additional numerical VI curves in the case where ψ0 = 0. Here, we see, as mentioned in the
main text, the missing steps are odd integer multiples of (hf/2e). The ac frequency range in Fig. S1a-d is chosen to
cover the approximate half-width of the Leggett mode resonance in the amplitude Aω = A0ΓLω/((ω

2−ω2
L)2 +Γ2

Lω
2),

illustrating the robustness of the missing steps over a bandwidth proportional to the inverse lifetime of the Leggett
mode.

In Fig. S2, we present calculations of Shapiro step widths of the nth step corresponding to V = n(hf/2e) in the
case where ψ0 = π/2. Fig. S2a-b show the step width ac frequency dependence near the Leggett mode frequency and

for Φ̂ = 0 and Iac/Ic = 0.05, where a normalized Aω is shown in black for reference. Clearly, deviations from the
conventional Shapiro step dependence follows the resonant Leggett amplitude. Fig. S2c show the power dependence
of steps for Φ̂ = 0 and f = fL. We see the gap is suppressed at Iac ∼ 0.25 Ic, which is much smaller than expected
in the conventional case. Furthermore, the step width dependence of odd steps exhibit resonant features appearing
consecutively with increasing power and disappering with the gap closure. Once the gap is closed, step widths exhibit
oscillations in power, similar to the conventional Bessel regime.

In Fig. S2d-e, we show the step width ac frequency dependence near the Leggett mode frequency and for Φ̂ = 1/2
and Iac/Ic = 0.05, where a normalized Aω is shown in black for reference. We observe a weakening of the gap near
the Leggett frequency, similar to the zero-flux case, but the gap actually becomes enhanced at the Leggett frequency.
In Fig. S2f, we present the power dependence of steps for Φ̂ = 1/2 and f = fL. We find similar resonant behavior of
odd steps at low power, but the features are difficult to distinguish between oscillations at higher powers associated
with the typical Bessel oscillations.
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Figure S1. Shapiro steps at various ac frequencies for Φ = 0 and using the same parameters as those used to generate other
calculations except that here the intrinsic phase between the two bands in a given junction is zero (rather than π).

Figure S2. a-b Step width dependence on ac frequency for Φ = 0 and Iac = 0.05Ic. The bold black line represents the
Lorenzian corresponding to the Leggett mode linewidth. c Step width dependence on ac power for Φ = 0 and f = fLeggett. d-e
Step widths dependence on ac frequency for Φ = Φ0/2 and Iac = 0.05Ic. f Step width dependence on ac power for Φ = Φ0/2
and f = fLeggett.
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IV. DEVICE CHARACTERIZATION

Fig. S3a shows an SEM image of the SQUID device used in the experiment. The scale bar is 5 µm. For each
Josephson junction in the SQUID, the width is 600 nm, and the gap 150 nm. The size of the middle open square
is about 800nm x 800nm. For IV and differential resistance measurements, the ac/dc current runs from contact 1 to
contact 3. The dc/ac voltage is measured between contacts 2 and 4. In Fig. S3b, we present the I-V curve measured
at B = 0T. The critical current is ∼ 1.1 µA. In Fig. S3c, we show I-V curves as a function of out-of-plane magnetic
fields, at a higher temperature of T = 0.39K (compared to Fig. 4a in the main text). In this plot, red color represents
positive Vdc, blue negative Vdc. In the green color regime, Vdc = 0. A typical feature, i.e., the envelop of the SQUID
oscillatory pattern being modulated by the Fraunhofer diffraction pattern of the single Josephson junction, is clearly
seen.

Figure S3. a An SEM image of the SQUID device used in the experiment. b The I-V curve measured at B = 0T. c The I-V
curves as a function of out-of-plane magnetic fields, at a higher temperature of T = 0.39K.

V. ADDITIONAL EXPERIMENTAL RESULTS

In Fig. S4 we present additional measurements of dV/dI and VI curves at zero magnetic field. In Fig. S4a, we show
the differential resistance at 2 GHz for various microwave powers. We see that steps 0, ± 1, ± 2 are clearly observed
before dissipative effects wash out higher steps. The measured VI curves are shown in Fig. S4b, where the steps are
not easily resolved with the naked eye (hence, the need for dV/dI measurements). Fig. S4c shows VI curves at 9 GHz,
showing a large first steps, the clear suppression of the second step, and a weak third step.

Figure S4. a The differential resistance at 2 GHz for a few microwave power levels. At this low frequency, both even and odd
Shapiro steps are seen. b The corresponding I-V curves at 2 GHz. c The I-V curves at 9GHz. The even Shapiro steps are
suppressed, as shown in the differential resistance in Fig. 4 of the main text.


