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The recent realization of twisted, two-dimensional, bilayers exhibiting strongly correlated states has created
a platform in which the relation between the properties of the electronic bands and the nature of the correlated
states can be studied in unprecedented ways. The reason is that these systems allow extraordinary control of
the electronic bands’ properties, for example by varying the relative twist angle between the layers forming the
system. In particular, in twisted bilayers the low energy bands can be tuned to be very flat and with a nontrivial
quantum metric. This allows the quantitative and experimental exploration of the relation between the metric of
Bloch quantum states and the properties of correlated states. In this work we first review the general connection
between quantum metric and the properties of correlated states that break a continuous symmetry. We then
discuss the specific case when the correlated state is a superfluid and show how the quantum metric is related to
the superfluid stiffness. To exemplify such relation we show results for the case of superconductivity in magic
angle twisted bilayer graphene. We conclude by discussing possible research directions to further elucidate the
connection between quantum metric and correlated states’ properties.

I. INTRODUCTION

One of the most exciting developments of the past few years
in condensed matter physics has been the ability of exper-
imentalists to realize two-dimensional (2D) “twisted bilay-
ers” [1] and observe the establishment in these systems of
strongly correlated electronic states [2–16]. These systems
are formed by two 2D crystals stacked with a relative twist
angle θ. Twisted bilayer graphene (TBLG), formed by two
graphene layers, so far, has been the most studied twisted bi-
layer system. The feat that experimentalists have been able to
accomplish is to control θ with high precision and tune it to
particular, “magic”, values (θM ) for which the bands of the
system are almost completely flat [17–19]. It is for this magic
values of θ that the system exhibits a very rich phase diagram
with strongly correlated phases, including a superconducting
phase for which the ratio between the critical temperature, Tc,
and the Fermi temperature, TF , ranges between 0.04 and 0.1,
depending on the doping [3]. The value of Tc/TF ≈ 0.1 is
much larger than the one for conventional BCS superconduc-
tors, and implies that to understand the origin of supercon-
ductivity in MATBLG weak coupling theory is not sufficient.
Such value is also larger than in most unconventional super-
conductors [3], in particular high Tc cuprates.

One very interesting aspect of magic angle twisted bilayer
graphene (MATBLG) is the non-trivial geometry of its quan-
tum states. As a consequence MATBLG is a new, highly tun-
able, platform in which the connection between strong corre-
lations and quantum states’ geometry can be explored in detail
both theoretically and experimentally. This allows to signifi-
cantly advance our understanding of the relation between the
metric of quantum states, the conditions necessary for the es-
tablishment and stability of strongly correlated states, and the
properties of these states.

For the past fifteen years the geometry of quantum states
has been at the center of some of the most interesting dis-
coveries in condensed matter physics. The geometry of a
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manifold of quantum states is encoded by the “quantum ge-
ometric tensor”, Qµν [20–23]. Qµν has both a real and an
imaginary part. The imaginary part of Qµν corresponds to
the Berry curvature [24]. In the past few years many interest-
ing developments in condensed matter physics have arisen by
a careful treatment of the Berry curvature. Exemplary are the
the discovery of topological insulators (TIs) and superconduc-
tors [25–29], Weyl and Dirac semimetals (SMs) [30–33], and,
more recently, higher order topological materials [34–42]. At
the same time, it is interesting to notice how much less atten-
tion the real part of Qµν , Re[Qµν ], the “quantum metric”, has
received compared to its imaginary part. This is in great part
due to the difficulty to measure physical quantities related to
Re[Qµν ]. However, the connection between quantum metric
and the properties of collective ground states breaking a con-
tinuous symmetry, and the availability of a system like MAT-
BLG, have opened a new avenue to understand how Re[Qµν ]
can affect the macroscopic properties of quantum systems.

In this work we briefly review the recent progress in the un-
derstanding of the relation between quantum metric and the
properties of correlated states of 2D systems. In section II we
present the formalism describing in general terms the relation
between quantum metric and correlated states, in section III
we discuss the case when the correlated state is a supercon-
ductor, in section IV we review some of the recent results for
MATBLG, and finally in section V we summarize the current
status of our understanding of the topic and possible develop-
ments in the near future.

II. QUANTUM METRIC AND PROPERTIES OF
MANY-BODY SYSTEMS

Quantum mechanical states are represented by rays in a
complex Hilbert space. For a given quantum system, there-
fore, the space of physical states is not the Hilbert space H,
but the projective Hilbert space PH. The projective Hilbert
space PH is the space formed by rays in the Hilbert space H,
where each ray is the set of vectors in H of unit norm that
differ only by multiplication by phase factors. For a Hilbert
space of dimension n, PH is the complex projective space
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CPn−1 formed by the lines through the origin of a complex
Euclidean space. The inner-product ofH endows PH with the
structure of a Kähler manifold, i.e. a manifold with a a proper
metric tensor [43; 44]. PH can be parametrized by an element
λ of a space V (that itself can be a manifold) like real space,
or momentum space. In the remainder we assume the space
V to be the momentum space with elements identified by the
momentum wave-vector k.

The inner product of H leads to the natural definition of
the distance ds2 between two vectors |ψ(k)〉, |ψ(k + dk)〉
with infinitesimally close momenta, k, k + dk: ds2 =
〈∂µψ|∂νψ〉dkµdkν , where ∂µ ≡ ∂/∂kµ. Given that quantum
states are represented by elements of PH, not H, the expres-
sion of ds2 is not the proper distance between two quantum
states with infinitesimally close momenta. This is also re-
flected by the fact that 〈∂µψ|∂νψ〉, in general, is not gauge
invariant. The proper distance between quantum states can be
obtained by redefining ds2 to remove the effects of a gauge
transformation [20–23]. This leads to the expression:

ds2 = Qµνdk
µdkν ; (1)

Qµν ≡ 〈∂µψ|∂νψ〉 − 〈∂µψ|ψ〉〈ψ|∂νψ〉 (2)
Bµν ≡ Im[Qµν ] (3)
gµν ≡ Re[Qµν ] (4)

where we have introduced the quantum geometric tensorQµν .
Qµν is gauge invariant. Its imaginary part is the Berry cur-
vature, Bµν , and is completely antisymmetric and therefore
does not contribute to ds2. Its real part, gµν , is the Fubini-
Study quantum metric [45; 46]. It is interesting to point out
that the Fubini-Study metric is the unique Riemannian metric
on PH that is invariant under the action of unitary transforma-
tions (U(n)) on CPn−1. The quantum geometric tensor Qµν
is positive semidefinite [20]. This fact implies the following
two inequalities [47]:

det gµν ≥ |Bµν |2, (5)
Trgµν ≥ 2|Bµν | (6)

It is possible to generalize the definition of Qµν to the
non-Abelian case [48], in analogy to the non-Abelian gener-
alization of the Berry curvature [49]. In this generalization
one takes into account that at the degeneracy points quantum
states related by a rotation in the subspace spanned by the
degenerate eigenstates are equivalent. By properly project-
ing 〈∂µψ|∂νψ〉 one obtains the gauge invariant “non-Abelian”
quantum metric.

The impact of the study of the effects of the Berry curva-
ture Im[Qµν ] on the properties of quantum systems cannot
be overstated. Just in the context of condensed matter sys-
tems the Berry curvature, and associated Berry phase [24],
greatly impacted the understanding of the quantum Hall ef-
fect, the anomalous Hall effect, orbital magnetism [50] and
it lead to the discovery of topological materials [27; 51], and
Weyl semimetals [32]. By contrast the effect of Re[Qµν ] has
so far been much less studied. gµν has been shown to be con-
nected to the Hall viscosity [52–60], a quantity that is difficult
to measure [61–67]. For a perfect conductor the longitudi-
nal electric conductivity σxx(ω) as a function of frequency ω

has a delta function Dδ(ω), where D is the Drude weight.
The Drude weight has also been shown to be connected to the
quantum metric gµν , [68–71]. Such connection, however, is
also difficult to ascertain experimentally given that at finite
temperature, or in the presence of any amount of disorder,
σxx(ω) does not have a Dirac’s delta for ω = 0 and there-
fore D = 0.

The experimental challenges to verify the relation between
gµν , the Hall viscosity, and D are likely an important reason
for the fact that much less research activity has been focused
on the study of the effects of the quantum metric than on the
study of the effects of the Berry curvature. Recently, how-
ever, novel connections [47; 72–78] have been made between
the quantum metric and properties of electronic systems. In
Refs. [47; 72] the quantum metric of a fractional Chern insu-
lator [79] has been bee shown to be related to the stability of
the fractional quantum Hall (FQH) phase of these systems. In
particular it was shown that for a fractional Chern insulator
band j the trace Tr[g

(j)
µν −|Bµν |] is correlated to the gap of the

FQH-like phase [72]. It is also known that the magnetic sus-
ceptibility of a periodic multi orbital electron system depends
on the metric properties of the quantum states [73; 74; 80].
In Ref. [75] this connection has been made more explicit for
the case of two-band models. The metric tensor of a singular
2D flat band [81], i.e. a flat band with a crossing point with
a dispersive band, has also been shown to be connected to the
energy spread of the Landau levels arising from the singular
2D flat band in the presence of a magnetic field [76].

For systems in which the interactions induce a collective
ground state that breaks a U(1) symmetry it has become ap-
parent that the quantum metric is connected to the phase stiff-
ness, ρ(s)

µν , of the collective ground state. This can be seen
considering that in this case the effective Ginzburg-Landau ac-
tion describing the low energy physics of the collective ground
state has a term of the form

S = β
1

2

∫
drρ(s)|∇ψ|2 (7)

where ψ = ψ0e
iφ is the complex order parameter describ-

ing the ground state, ψ0 being the amplitude and φ the phase
parametrizing U(1), and β = 1/(kBT ), T being the temper-
ature and kB the Boltzmann constant. To simplify the nota-
tion in Eq. (7) we have assumed the stiffness to be diagonal
and isotropic ρ(s)

µν = ρ(s)δµν . We can then introduce a gauge
field Aeff associated to the U(1) charge ẽ. In the presence of
Aeff the gradient in Eq. (7) must be replaced by the gauge co-
variant gradient ∇− iẽAeff from which we get mix terms of
the form −iẽAeff∇ that describe the coupling of the system
to the field Aeff . From this we can see that that the current
operator j coupling to Aeff is ∼ ẽ∇x, and that ρs must be
related to the strength of the current-current response (K) of
the system to the probing field Aeff . This is completely anal-
ogous to the case of a superconductor, discussed in the next
section, in which the connection between the metric of the
quantum states and ρ(s)

µν is shown explicitly. This connection
was first shown explicitly for simple cases in superconduc-
tors [82–84] and for flat ferromagnetic states in systems with
flat bands [85].
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Among all the types of condensed matter systems in which
the ground states spontaneously break a U(1) symmetry two
are particularly important and common: ferromagnets (FMs)
and superconductors (SCs). For both classes of systems
Re[Qµν ] can play an essential role in determining the prop-
erties of the collective ground state. For magnetic systems
Re[Qµν ] enters the expression of the spin-stiffness, ρ(s,spin)

µν ,
for superconductors it contributes to the superfluid stiffness,
ρ

(s)
µν , or, equivalently, the superfluid weight D(s)

µν . ρ(s,spin)
µν and

ρ
(s)
µν can be measured and are not affected by small amounts of

disorder and so their relationship to Re[Qµν ] can be verified
experimentally.

For 2D systems for which the ground state spontaneously
breaks a U(1) symmetry, ρ

(s)
µν governs the Berezinskii-

Kosterlitz-Thouless [86; 87] (BKT) transition, in particular it
fixes the value of the temperature, TKT , at which the transi-
tion takes place. For an isotropic system ρ

(s)
µν = ρ(s)δµν and

ρ(s) fixes TKT via the relation [87]:

kBTKT =
π

2
ρ(s)(TKT ). (8)

As we discuss in the following two sections, equation (8) can
be used to estimate the value of ρs in 2D systems.

For a multi-orbital system ρ
(s)
µν has a contribution due to the

curvature of the bands, the so called “conventional” contri-
bution, ρ(s,conv)

µν , and a contribution due to Re[Qµν ], the so
called “geometric” contribution, ρ(s,geo)

µν . Re[Qµν ] can be dif-
ferent from zero only for multiband systems. It is therefore
clear that the geometric contribution to ρ(s)

µν can be dominant
in multi-orbital systems with flat bands. This is precisely the
situation in MATBLG: the effective moiré lattice of MATBG
has a multiband spectrum with the lowest energy bands, the
ones that participate in the formation of collective ground
states such as superconducting and ferromagnetic states [88–
90], extremely flat. The advent of systems like MATBLG has
then greatly increased our ability to study and understand the
relation between the metric of quantum states and the macro-
scopic properties of collective ground states.

III. QUANTUM METRIC AND SUPERFLUID STIFFNESS

To exemplify in concrete terms the connection between the
quantum metric and the stiffness of a ground state breaking a
U(1) symmetry we consider the case of a superconductor. For
the linear current response to an external vector potential, in
momentum and frequency space we have

jµ(k, ω) = Kµν(k, ω)Aν(k, ω) (9)

where jµ(k, ω),Aµ(k, ω), andKµν(k, ω) are the Fourier am-
plitude with wave vector k and frequency ω of the µ com-
ponent of the current density, the µ component of the vector
potential A, and of the µν component of the current-current
response function, respectively. The superfluid weight, D(s)

µν

is the tensor that relates, within the linear approximation, jµ

to the ν component of a static (ω = 0) transverse vector po-
tential, k ·A = 0, in the limit k → 0. Denoting by k‖, k⊥,
the components of k parallel and perpendicular to A, respec-
tively, we have [91; 92]:

D(s)
µν ≡ − lim

k⊥→0
Kµν(k‖ = 0, ω = 0). (10)

By combining Eqs. (9), (10) we obtain London’s equation

lim
k⊥→0

jµ(k‖ = 0, ω = 0) = −D(s)
µν lim

k⊥→0
Aν(k‖ = 0, ω = 0)

(11)
that captures the key features, such as the Meissner effect,
of the superconducting state. ρ(s)

µν is directly proportional to
D

(s)
µν :

ρ(s)
µν =

~2

e2
D(s)
µν (12)

Notice that Eq. (11) was obtained requiring ω = 0, k‖ = 0,
and then taking the limit k⊥ → 0. As a consequence Eq. (11)
cannot be used to relate a time-dependent current to a time-
dependent vector potential. This can only be done by allowing
ω 6= 0 when calculating Kµν(k, ω). The value of Kµν(k, ω)
in the limit (k = 0, ω → 0) is proportional to the Drude
weight [91; 92] (see Sec. II).

For an isolated parabolic band, at zero temperature, ρ(s)
µν =

~2(n/m∗)δµν [91; 92], where n is the electron density, and
m∗ is the effective mass of the band. This conventional result
would lead us to the conclusion that for systems like MAT-
BLG, for which m∗ → ∞, ρ(s)

µν should be very small so
that the hallmark signatures of superconductivity such as the
Meissner effect (for 3D systems) should be extremely weak.
This is in contrast with the experimental observations and
shows that the conventional expression for ρ(s)

µν obtained for
a single parabolic band is not general enough.

For the case of a multi-band system we need to derive the
expression of ρ(s)

µν from the general expression of Kµν(k, ω).
Using the Kubo formula we have:

Kµν(k, ω) = 〈Tµν〉+ 〈χpµν(k, ω)〉 (13)

where Tµν is the diamagnetic current operator

Tµν =
∑
σ

∫
dk

(2π)d
c†kσ∂µ∂νH(k, σ)ckσ, (14)

and

χpµν(k, ω) = −i
∫ ∞

0

dteiω
+t〈[jpµ(k, t), jpν (−k, 0)]〉 (15)

is the time Fourier transform of the correlator of the paramag-
netic current operator

jpµ(k) =
∑
σ

∫
dk

(2π)d
c†k′σ∂µH(k′ + k/2, σ)ck′+kσ. (16)

The angle brackets denote expectation values over the ground
state, and [, ] is the commutator. In Eq. (14), (16) c†k′σ (ck′σ)
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is the creation (annihilation) operator for an electron with mo-
mentum k and spin σ, and d is the dimensionality of the sys-
tem. H is the matrix Hamiltonian describing the system ex-
pressed in the basis used for the creation annihilation opera-
tors (spin-momentum basis).

A superconductor can be described in general by a Bo-
golyubov de Gennes HamiltonianHBdG of the form:

HBdG = (ψ†TψB)HBdG

(
ψT
ψ†B

)
, HBdG =

(
HT ∆̂

∆̂† −HB

)
(17)

where ψ†T , ψ†B (ψT , ψB) are the creation (annihilation) spinor
operators for the states, described in the normal phase by the
matrix Hamiltonians HT , HB , respectively, that pair to form
the condensate characterized by the pairing matrix ∆̂. Using
the expression of HBdG given in Eq. (17), for 〈Tµν〉, in the
Matsubara formalism, we obtain:

〈Tµν〉 =
1

β

∫
dk

(2π)d

∑
ωn

Tr[∂µ∂νHBdGG(iωn,k)] (18)

where ωn = πkBT (2n + 1), with n ∈ Z, are the fermionic
Matsubara frequencies and

G(iωn,k) = [iωn −HBdG]−1 =
∑
j

|ψj(k)〉〈ψj(k)|
iωn − Ej(k)

(19)

is the retarded Green’s function. In Eq. (19) Ej and |ψj(k)〉
are the eignenvalues and eigenvectors, respectively, of HBdG.
By performing the integration over k by parts, and considering
that, from the definition of G, ∂µG = −G2∂µHBdG, we can
rewrite Eq. (18) in the form:

〈Tµν〉 =
1

β

∫
dk

(2π)d

∑
ωn

Tr[∂µHBdGG
2(iωn,k)∂νHBdG].

(20)
Similarly for the contribution arising from the paramagnetic
currents we obtain:

〈χpµν(k, iΩm)〉 =
1

β

∫
dk′

(2π)d

∑
ωn

Tr[G(iωn,k
′)

∂νHBdG(k′ + k/2)τzG(iωn + iΩm,k
′ + k)

∂µHBdG(k′ + k/2)τz]. (21)

where Ωm = 2πmkBT (m ∈ Z) are the bosonic Mat-
subara frequencies, and τz is the z-Pauli matrix. Combin-
ing Eqs. (13), (19), (20), and (21), after summing over the
fermionic Matsubara frequencies, in the limit iΩm = 0,
k→ 0, we obtain [84]:

ρ(s)
µν =

∑
i,j

∫
dk

(2π)d
nF (Ei)− nF (Ej)

Ej − Ei

[〈ψi|∂µHBdG|ψj〉〈ψj |∂νHBdG|ψi〉
−〈ψi|∂µHBdGτz|ψj〉〈ψj |τz∂νHBdG|ψi〉] (22)

where nF (E) is the Fermi-Dirac function.

Equation (22) can be used to show the connection between
ρ

(s)
µν and the quantum metric of the Bloch states. The origin

of such connection can be understood by considering that in
general, for a generic Hamiltonian H , the expectation values
〈ψi|∂µH|ψj〉 of the velocity operator ∂µH have an anoma-
lous contribution proportional to 〈ψi|∂µψj〉, and that therefore
the terms 〈ψi|∂µHBdG|ψj〉〈ψj |∂νHBdG|ψi〉 in Eq. (22) give
rise to terms of the form 〈∂µψi|∂νψi〉 that, as shown above,
Eq. (2), (4), enter the expression of the quantum metric. We
call the part of ρ(s)

µν arising from these terms the “geometric
part”, ρ(s,geo)

µν , of ρ(s)
µν .

We can explicitly separate the contribution to ρ(s)
µν arising

from the metric of the quantum states from the conventional
one, arising from terms proportional to the derivatives of the
eigenvalues with respect to k. Let {ε(T )

mT } ({ε(B)
mB}), {|mT 〉}

({|mB〉}) be the eigenvalues and eigenstates, respectively, of
HT (HB). The Hilbert space for HBdG is given by the direct
sum of the Hilbert spaces HT of HT and HB of HB . Any
eigenstate |ψi〉 of HBdG can be written as (|ψTi 〉, |ψBi 〉) with
(|ψTi 〉 ∈ HT , and (|ψBi 〉 ∈ HB. Assuming ∆̂ to be indepen-
dent of k, following [84], we can rewrite Eq. (22) to identify
the contribution to ρ(s)

µν arising from the quantum metric of the
|mT 〉, |mB〉 states, i.e. the quantum metric of the bands in the
normal phase. To do this we start by rewriting the expectation
values 〈ψi|∂µHBdG|ψj〉 in terms of the |mT 〉, |mB〉 states

〈ψi|∂µHBdG|ψj〉 =
∑

mT ,mB
nT ,nB

[cTi,mT J
T
µ,mT ,nT c

T
nT ,j−

cBi,mBJ
B
µ,mB ,nBc

B
nB ,j ] (23)

where

cXi,mX = 〈ψXi |mX〉; (24)

JXµ,mX ,nX = 〈mX |∂µHBdG|nX〉. (25)

and X = (T,B). To simplify the notation in Eqs. (23)-(25)
we do not show explicitly the dependence of the quantities
on the momentum k. Using Eqs. (23)-(25) we can rewrite
Eq. (22) in the form

ρ(s)
µµ =− 4

∑
mT ,nT
pB ,qB ,i,j

∫
dk′

(2π)d
Re

[
nF (Ei)− nF (Ej)

Ej − Ei

cTi,mT (cTj,nT )∗cBj,pB (cBi,qB )∗JTµ,mT ,nT J
B
µ,pB ,qB ] (26)

The current expectation values JXµ,mX ,nX can be written as

JXµ,mX ,nX = ∂µε
(X)
mX δmX ,nX + (ε(X)

nX − ε
(X)
mX )〈mX |∂µnX〉.

(27)
Equation (27) shows that JXµ,mX ,nX has a ”conventional” con-

tribution proportional to ∂µε
(X)
mX , and a contribution, the sec-

ond term in Eq. (27), related to the geometry of the quantum
states. Combining Eq. (26) and Eq. (27) we can then identify
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three contributions to ρ(s)
µν =ρ(s,1)

µν + ρ(s,2)
µν + ρ(s,3)

µν ,

ρ(s,1)
µν =−4

∑
mT ,nT
pB ,qB ,i,j

∫
dk

(2π)d
Re
[
CpBqBmTnT ∂µε

(T )
mT ∂νε

(B)
qB δmTnT δpBqB

]
(28)

ρ(s,2)
µν =−4

∑
mT ,nT
pB ,qB ,i,j

∫
dk

(2π)d
Re
[
CpBqBmTnT [∂µε

(T )
mT δmTnT

(ε(B)
qB − ε

(B)
pB )〈pB |∂µqB〉

+ ∂νε
(B)
pB δpBqB (ε(T )

nT − ε
(T )
mT )〈mT |∂νnT 〉]

]
(29)

ρ(s,3)
µν =−4

∑
mT 6=nT
pB 6=qB ,i,j

∫
dk

(2π)d
Re
[
CpBqBmTnT [(ε(B)

qB − ε
(B)
pB )(ε(T )

nT − ε
(T )
mT )

〈pB |∂µqB〉〈mT |∂νnT 〉]] . (30)

where

CpBqBmTnT ≡
∑
ij

nF (Ei)− nF (Ej)

Ej − Ei
cTi,mT (cTj,nT )∗cBj,pB (cBi,qB )∗.

(31)
ρ

(s,1)
µν is the conventional contribution to ρ

(s)
µν . ρ

(s,2)
µν is a

”mixed” contribution: it depends in part on the properties of
the band dispersion, as the conventional part, and in part on
the geometry of the quantum states. For systems with particle-
hole symmetry this term is negligible. ρ(s,3)

µν has only terms
proportional to 〈mT |∂νnT 〉, i.e. terms that depend on the
metric properties of the quantum states; there are no terms
proportional to the gradient of the eigenvalues with respect to
k. For this reason, it is natural to identify ρ(s,3)

µν as the dom-
inant geometric term. ρ(s)

µν and ρ(s,1)
µν are gauge invariant and

therefore the combination ρ(s,2)
µν +ρ(s,3)

µν is also gauge invari-
ant. For this reason it is useful at times to separate ρ(s)

µν in the
two terms: ρ(s,1)

µν that only depends on the bands’ dispersion,
and ρ(s,2)

µν +ρ(s,3)
µν that is mostly given by the metric proper-

ties of the Bloch states. In the remainder, considering that we
mostly focus on superconducting systems for which ρ(s,2)

µν is
negligible, we identify ρ(s,3)

µν as the geometric part, ρ(s,geo)
µν , of

ρ
(s)
µν .
The expression of ρ(s,geo)

µν ≡ρ(s,3)
µν given by Eq. (30), as long

as the order parameter is independent of momentum, is quite
general and therefore shows the general nature of the con-
nection between quantum metric and superfluid density. It is
fairly straightforward to write a similar equations for the spin
stiffness of a XY ferromagnet or the pseudo-spin stiffness of
an XY orbital-ferromagnet, i.e., a state in which the degree of
freedom ordering is not the spin but an orbital degree of free-
dom, situation that appears to be very relevant for systems like
MATBLG [9; 93–95].

It is instructive to see how Eqs. (28), (30) simplify when
the chemical potential lies within a well isolated band, j. In
this case, neglecting terms of order 1/Γij , where {Γij} are
the gaps between band j and the other bands, and assuming

the pairing matrix to be proportional to the identity with am-
plitude ∆, we can obtain a direct relation between ρ(s,geo)

µν and
the quantum metric g(j)

µν of band j when time-reversal sym-
metry is preserved and the superconducting order parameter,
in addition to being k-independent, only has intraband terms.
In this case we have [84]:

ρ(s)
µν =

∫
dk

(2π)d

[
2
∂nF (Ej)

∂Ej
+

1− 2nF (Ej)

Ej

]
∆2

E2
j

∂µεj∂νεj+

2∆2

∫
dk

(2π)d
1− 2nF (Ej)

Ej
g(j)
µν (32)

where k is the momentum. The last term in Eq (32) is the
geometric part of ρ(s)

µν that, in this simple case, is related in
a very direct way to the quantum metric g(j)

µν of the isolated
band.

Using the expression above, and the inequality (6) for the
case of an isolated band we can provide a bound for the geo-
metric part of ρ(s)

µν [82; 84]:

ρ(s,geo)µν ≥ 2∆2

∫
dk

(2π)d
1− 2nF (Ej)

Ej
|Bµν |2. (33)

This result shows that for bands with large Berry curvature the
geometric contribution to ρ(s)

µν is large. It is important to point
out that Eq. (33) only provides a lower bound given that it is
possible to have situations in which gµν 6= 0 even if the Berry
curvature is zero [75].

In 2D, for the case in which the isolated band, is flat, i.e.
having a bandwidth much smaller than the Γij gaps, and non
degenerate, ρ(s)

µν is only given by the geometric part and can
be written in the form [82]:

ρ(s)
µν = 2∆

√
ν(1− ν)

∫
dk

(2π)2
gµν(k). (34)

where ν is the filling fraction of the flat band. In this case
we have that (1/2π)

∫
dkBµν = εµνC, where εµν is the

2×2 Levi-Civita tensor and C is the Chern number of the iso-
lated band. Using inequality (5) we obtain det(

∫
dkgµν) ≥

det(dk
∫
|Bµν |2 = C2 and then, for an isotropic system [82]:

ρ(s) ≥ ∆

π

√
ν(1− ν)|C|. (35)

In general, when the 2D flat band has degenerate points it
might not be possible to find a lower bound for ρ(s)

µν =ρ(s,geo)
µν ,

however, this can be done for the case relevant to MATBLG
in which the two low-energy 2D flat band have degeneracy
points and C2zT symmetry, C2z being the twofold rotation
around the z-axis perpendicular to the 2D plane to which the
quantum states are confined, and T the time-reversal oper-
ator [96]. Given the degeneracy of the bands it is neces-
sary to consider the non-Abelian generalization of the expres-
sion of Qµν . It can be shown that the C2zT symmetry con-
strains the non-Abelian Berry curvature to the form [97; 98]
Bxy = −bxy(k)σ2 with (1/2π)

∫
dkbxy = e2, where e2 is

the Wilson loop winding number [97], or ”Euler’s class” [98],
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of the two bands. In this case, assuming the pairing ∆ is non
vanishing only for the low-energy, two-fold degenerate, band,
and using again inequality (6), we have that ρ(s) has the lower
bound [96]

ρ(s) ≥ ∆

π

√
ν(1− ν)|e2|. (36)

For the specific case of TBLG e2 = 1 so that, taking into
account the spin and valley degeneracy, we obtain [96]

ρ(s) ≥ 4
∆

π

√
ν(1− ν). (37)

Inequalities (35), (36) show how the topological invariants of
the bands can be used to obtain lower bounds for ρ(s)

µν in flat-
band systems.

For a superconductor ρ(s)
µν determines the phase-stiffness of

the superconducting state and therefore its stability against
fluctuations. ρ

(s)
µν also determines the superfluid density, a

quantity that can be measured directly.
ρ(s) = ρs = (1/d)Trρ

(s)
µν is easy to measure for 3D super-

conductors, given that it is related to to the London penetration
depth λL via the equation

λL =
~
e

1
√
µ0ρs

(38)

where µ0 is the magnetic permeability.
For 2D superconductors ρs cannot be obtained indirectly

by measuring λL and recently techniques have been proposed
to obtain it via a direct measurement [99]. However, for 2D
superconductors, and in general 2D ground states that break
a U(1) symmetry, ρ(s) can also be obtained experimentally
via Eq. (8) relating TKT to ρ(s). In particular, for 2D super-
conductors, TKT can be obtained as the temperature at which
the voltage V across the superconductor scales as I3, I be-
ing the current. This was the approach used in Ref. [7] to
estimate TKT in MATBLG. Using Eqs. (8) and (22) we can
relate TKT to ρs. This requires to properly take into account
the temperature dependence of ρs: in addition to the tempera-
ture dependence due to the presence of the Fermi occupation
factors, we must include the temperature dependence of the
order parameter ∆. For many of the second-order phase tran-
sitions of interest, in first approximation, we can assume the
”BCS scaling” ∆(T ) = 1.76kB(1 − T/Tc)

1/2. In general
∆(T ) can be obtained by solving the non-linear gap equation.
For the concrete example of superconducting MATBLG dis-
cussed in Sec. IV we have found that the BCS scaling of ∆(T )
agrees well with the one obtained solving the non-linear gap
equation.

IV. QUANTUM METRIC EFFECTS FOR CORRELATED
STATES IN TWISTED BILAYER GRAPHENE

The behavior of TBLG is particularly interesting for twist
angles θ ∼ 1.00◦. For such small twist angles the moiré prim-
itive cell is very large and the most effective way to obtain

the electronic structure is to use an effective low-energy con-
tinuum model [19]. The details of the model can be found
in Ref. [19], here we briefly outline the model’s essential el-
ements and assumptions. In graphene the conduction and va-
lence bands cross at the corners K of the hexagonal Brillouin
zone (BZ), |K| = 4π/3a0 with a0 the graphene’s carbon-
carbon distance. Around the K points electrons in graphene
behave as massless Dirac fermions [100] and the Hamiltonian
for each layer, top (t) and bottom (b), forming TBLG is

Ht/b = vFkt/b · σ − µσ0, (39)

where vF = 106 m/s is graphene’s Fermi velocity, kt/b =
(kx, ky)t/b is the 2D momentum, measured from the Kt/b

point, for an electron in the top/bottom layer, σ = (σx, σy)
is the 2D vector formed by the x, y Pauli matrices in sublat-
tice space [100], µ is the chemical potential, and σ0 is the 2×2
identity matrix. Conservation of crystal momentum requires
kb = kt + (Kt − Kb) + (Gt −Gb). Here {Gt/b} are the
reciprocal lattice wave vectors in the top/bottom layer. Due to
the twist the set of {Gt} is different from the set of {Gb}. In
the model of Ref. [19] only the tunneling processes for which
|kb − kt| = |Kt − Kb| = 2K sin(θ/2), are taken into ac-
count. There are three vectors Qi = (Kt−Kb)+(Gt−Gb)i
(i = −1, 0, 1) for which Q ≡ |Q| = 2K sin(θ/2) to which
correspond the interlayer tunneling matrices [19]

T0 = w

(
1 1
1 1

)
; T±1 = w

(
e±i2π/3 1
e∓i2π/3 e±i2π/3

)
(40)

where w ≈ 100 meV is the interlayer tunneling strength. Up
to an overall scale factor the bands only depend on the ra-
tio w/vFQ [19]. In the remainder we set w = 118 meV.
The precise value of w depends on the detail of the exper-
imental sample. In addition, due to corrugation effects the
tunneling strength, w0, for regions with AA stacking can be
different from the one, w1, for regions with AB stacking. We
assume the ratiow0/w1 to be uniform and equal to 1. Changes
in the ratio w0/w1 affect the low energy bands and there-
fore the superfluid stiffness. All the tunneling processes for
which |kb − kt| = Q are taken into account by keeping all
the recursive tunneling processes on a honeycomb structure
constructed in momentum space with nearest neighbor sites
connected by the vectors Qi. The primitive cell of this struc-
ture is the moiré lattice’s mini-BZ. We adopt the convention
in which the corners, κ±, of the mini-BZ coincide with the
points for which kt/b = 0. The number of sites of the hon-
eycomb structure in momentum space used to obtain the band
structure is increased until the bands converge. We find that
for w = 118 meV and θ ≈ 1.00◦ convergence is reached
when the number of sites is ∼ 200.

In Ref. [19] and other works θM is defined as the twist angle
for which the Fermi velocity at the κ± points of the mini-BZ
vanishes, whereas in other works it is defined as the value of
θ for which the bandwidth of the conduction, or valence, band
is minimum. In the reminder we will adopt this second defi-
nition. Figure 1 (a) shows the 2D valence band at the magic
angle θ = 1.05◦. We see that the bandwidth is just ∼ 2 meV.
Small deviations of θ away from θM have large effects on the
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bandwidth of the lowest energy bands. This can be seen from
Fig. 1 (b), showing the 2D valence band for θ = 1.00◦: a
change of just 0.05◦ in θ results in a factor of 3 change in
the bandwidth of the lowest energy bands. The change in the
bandwidth, in turn, strongly affects the stability, and proper-
ties of the correlated ground states.

FIG. 1. Valence band of TBLG for θ = 1.05◦, (a), and θ = 1.00◦,
(b). The high symmetry points in the moiré Brillouin zone (BZ) are
also shown. Adapted from [101].

The superconducting paring matrix ∆̂ is obtained via the
mean-field approximation after adding an effective local (s-
wave) attractive interaction whose strength is set so that at
the magic angle, θ = 1.05◦, Tc = 1.63K when µ =

−0.3 meV [101], in agreement with experiments [3]. ∆̂
describes an s-wave superconductor whose only significant
Fourier components are the one with wave vector q equal to
zero and the ones with q = Qi [101; 102].

The large size of the moiré primitive cell in TBLG when θ
is of the order of 1◦ implies that effectively TBLG is a sys-
tem with a large number of orbital degrees of freedom. This
results in a very non-trivial quantum geometric tensors. In
particular, for θ close to the magic angle, we have several re-
gions of the BZ where the Berry curvature is very large. Con-
sidering that the positive semidefinite nature of Qµν implies
det gµν ≥ |Bµν |2, see Sec. II, we expect in these regions the
geometric contribution to ρ(s)

µν to be large. Fig. 2 (a) shows
the profile in the BZ of the integrand to obtain ρ

(s,geo)
µµ for

θ = 1.05◦. From this figure we see that at the magic an-
gle there are large regions in the mini BZ that provide strong
contributions to ρ(s,geo)

µµ . Figure 2 (b) shows the conventional,
geometric, and total, longitudinal superfluid stiffness for dif-
ferent, small, values of θ and fixed µ. We see that that ρ(s,geo)

µµ

is larger than ρ(s,conv)
µµ only close to the magic angle, but that

it is significant for all the values of θ smaller than 1.1◦.
The results of Fig. 2 (b) show that systems like TBLG are

an ideal playground in which to test the connection between
quantum geometry and macroscopic properties of correlated
ground states. This can be seen, for instance, by considering
the scaling of ρs with the chemical potential µ at the magic
angle, and away from it. The conventional contribution to
ρ

(s)
µν , in general, increases with doping, and therefore with µ.

As a consequence, in systems in which the superfluid stiffness
is mostly due to the conventional term, the total ρs increases
with µ. This is the case also for TBLG away from the magic

FIG. 2. (a) Integrand of ρ(s,geo)µµ for TBLG at the magic angle.
µ = −0.30 meV. (b) Conventional (Conv) and geometric (Geom)
contributions to the total longitudinal superfluid stiffness, ρs ≡
(1/2)Trρ

(s)
µν , for TBLG as a function of twist angle. µ = −0.3 meV.

Adapted from [101].

angle as shown in Fig 3 (a) for which the conventional con-
tribution to ρs is larger than the geometric contribution. The
geometric contribution to ρ(s)

µν , in general, can increase or de-
crease with doping. From Fig. 3 (a) we see that, for θ = 1.00◦,
ρ

(s,geo)
µν decreases with µ. This is also the case at the magic

angle where, however, ρ(s,geo)
µν dominates over ρ(s,conv)

µν . As a
consequence at the magic angle we have the unusual situation
that the total ρ(s)

µν decreases with µ as as shown in Fig 3 (b).

FIG. 3. Conventional (Conv) and geometric (Geom) contributions
to ρs as a function of doping, µ (hole doping), for TBLG with θ =
1.00◦, (a), and θ = 1.05◦ (magic angle), (b). Adapted from [101].

We expect that the scalings of ρs with respect to µ will
be reflected in the scaling of TKT . Using Eq. (8), knowing
the temperature scaling of ρ(s)

µν , TKT can be calculated. Fig-
ure 4 (a) shows the results for the ratio TKT /Tc away from
the magic angle, θ = 1.00◦. As expected we see that TKT /Tc
increases as the hole density increases. At the magic angle we
have instead that TKT /Tc decreases with doping, as shown
in Fig 4 (b), a consequence of the fact that at the magic angle
the geometric contribution of ρ(s)

µν dominates.
In a 2D superconductor the unbounding of the vortices due

to thermal fluctuations causes a finite resistance and therefore
a finite longitudinal voltage, Vxx, that depends on the strength
of the electrical current I driven through the system. For
T = TKT we have that Vxx ∝ I3. By measuring the Vxx(I)
relation at different temperatures is then possible to estimate
TKT as the temperature for which Vxx ∝ I3. For TBLG this



8

FIG. 4. Calculated TKT /Tc as a function of µ for θ = 1.00◦,
away from the magic angle, (a), and at the magic angle (b); adapted
from [101]. (c) TKT /Tc as a function of |nh| in the hole-doped
regime obtained from the experimental measurements presented in
Ref. [7]. (d) Tc and TKT as a function of θ for TBLG when µ =
−0.3 meV; adapted from [101].

was done in Ref. [7]. Figure 4 (c) shows the scaling of TKT
/Tc obtained using the two data points presented in the ”Ex-
tended Data Table 1” of Ref. [7] for MATBLG in the hole
doped regime. The figure shows that in the MATBLG sam-
ples used in Ref. [7], in the hole-doped regime, TKT /Tc de-
creases with doping in qualitative agreement with the results
of Fig 4 (b), suggesting that also experimentally, in the hole-
doped regime, the geometric contribution of ρ(s)

µν dominates
over the conventional one.

Figure 4 (d) shows the dependence in TBLG of TKT on
the twist angle for fixed chemical potential, µ = −0.3 meV.
These results show that, because of the geometric contribu-
tion to ρs, at the magic angle TKT is largest, along with Tc.
This suggests that in multiorbital systems, like TBLG, the ge-
ometric contribution to ρs can compensate the suppression of
ρ

(s,conv)
µµ associated with the flattening of the bands and lead

to robust superfluid states.
The discussion above focused on the case when the cor-

related ground state breaking a U(1) symmetry is the super-
conducting state. A very similar discussion can be carried
out for other ground states that break a U(1) symmetry. In
particular similar results can be obtained for the ferromag-
netic state [103–105]. Recently it has been suggested that an
”orbital-magnetic” state, characterized by a non-zero sublat-
tice polarization, might be one of the correlated states most
likely realized in TBLG [9; 93–95]. Also for this state, an
analysis similar to the one presented above for the supercon-
ducting state can be done.

More recently, we have considered the possibility that in
double TBLG an exciton condensate state might be real-
ized [106]. This is a long sought correlated state in which
electron and holes (e-h) pair to form a neutral superfluid [107–
115]. We considered a double layer formed by two MATBLG,

one electron-doped and one hole-doped, separated by a thin
dielectric. As for the case of superconductivity the flatness
of the bands, while favoring the formation of e-h pairs, can
lead to a very small superfluid density. We found that, for the
exciton condensate, the quantum metric plays an even more
critical role than for the superconducting case in stabilizing
the collective state and in guaranteeing a nonzero value of the
superfluid stiffness [106].

V. CONCLUSIONS AND OUTLOOK

The experimental realization of magic angle twisted bilayer
graphene systems has opened a completely new avenue to ex-
plore the connection between the metric of quantum states and
the properties of strongly correlated states that break continu-
ous symmetries. It has shown experimentally that the flatness
of the low energy bands does not necessarily imply a low su-
perconducting density ρ(s)

µν and demonstrated the importance
of the interband contributions, associated with a non-trivial
quantum metric of the bands, to ρ(s)

µν .
The experimental results on MATBLG, combined with the

theoretical treatment of ρ(s)
µν that includes the geometric contri-

bution [82–84; 96; 101; 105; 116–118], show that the quantum
metric plays an important role in determining the properties
of the correlated states of multi-orbital systems. Multilayers
formed by 2D crystals stacked with relative small twist angles
have very large moiré primitive cells and therefore many or-
bitals and low energy bands with very small bandwidths. For
these systems, therefore, the quantum metric plays in impor-
tant role in determining the stability and properties of corre-
lated ground states. We expect that the study of the connection
between quantum metric and properties of correlated states
will be extended to several new twisted 2D multilayers, both
based on graphene [6; 119], and on other 2D crystals such
as monolayers of transition metal dichalcogenides [16; 120–
132].

A new interesting research direction would be the study of
the interplay between quantum metric, disorder, and stiffness
of the correlated states, in particular in twisted bilayers [133].
We could expect that for states like superconductivity disorder
might suppress the conventional part of ρ(s)

µν more than the
geometric part. It will be interesting to verify theoretically and
experimentally the extent of the validity of such expectation.

Correlated states that break a continuous symmetry can dif-
fer topologically. For these states it will be interesting to in-
vestigate how the connection between quantum metric and
stiffness might vary between the different topological phases,
and, more in particular, if there are features of such connec-
tion that can be used to identify the topological phases. For in-
stance, topologically different superconducting phases can be
realized in superconducting quantum anomalous Hall (QAH)
states [134]. Considering the recent observation of signa-
tures of QAH states in MATBLG, superconducting topolog-
ical states might be realized in MATBLG proximitized to a
superconductor.

In some cases, correlated states breaking different continu-
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ous symmetries can compete or coexist. It will be interesting
to study the relation between quantum metric and properties
such as ρ(s)

µν of competing or coexisting collective states in
systems like TBLG.

As discussed in Sec. III, in 2D systems, experimental evi-
dence of the connection between quantum metric and ρ(s)

µν can
be obtained indirectly by obtaining the scaling of TKT with
respect to other tunable quantities such as doping. It will be
interesting to have more direct experimental evidence of the
effects of the metric of the quantum states on the properties
of correlated states. One approach would be to measure the
dispersion of the Goldstone modes associated with the spon-
taneous breaking of the continuous symmetry given that ρ(s)

µν

enters the dispersion of such modes.
In general, the quantitative understanding of the relation be-

tween quantum metric and the stability and properties of col-
lective ground states will allow to better design strongly inter-

acting systems with the desired functionalities. By designing
multiorbital systems with flat bands that maximize the quan-
tum metric we can achieve both large values of Tc and super-
fluid density, properties that are desirable in several applica-
tions.
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