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In this article we review recent work on van der Waals (vdW) systems in which at least one of the components
has strong spin-orbit coupling. We focus on a selection of vdW heterostructures to exemplify the type of
interesting electronic properties that can arise in these systems. We first present a general effective model to
describe the low energy electronic degrees of freedom in these systems. We apply the model to study the
case of (vdW) systems formed by a graphene sheet and a topological insulator. We discuss the electronic
transport properties of such systems and show how they exhibit much stronger spin-dependent transport effects
than isolated topological insulators. We then consider vdW systems in which the layer with strong spin-orbit
coupling is a monolayer transition metal dichalcogenide (TMD) and briefly discuss graphene-TMD systems. In
the second part of the article we discuss the case in which the vdW system includes a superconducting layer in
addition to the layer with strong spin-orbit coupling. We show in detail how these systems can be designed to
realize odd-frequency superconducting pair correlations. Finally, we discuss twisted graphene-NbSe2 bilayer
systems as an example in which the strength of the proximity-induced superconducting pairing in the normal
layer, and its Ising character, can be tuned via the relative twist angle between the two layers forming the
heterostructure.

I. INTRODUCTION

Van der Waals (vdW) heterostructures [1–4] represent
a growing class of systems which are formed from two-
dimensional (2D) layers of material held to one another by
only van der Waals forces. One of the most common vdW het-
erostructures, graphite, is composed entirely of layered sheets
of graphene [5–7], a one-atom thick 2D crystal of carbon
atoms arranged in a honeycomb structure. The nature of the
vdW force implies that in a vdW system the stacking configu-
ration of the layers is not dictated by chemistry but, to a great
extent, can be tuned arbitrarily in an almost continuous way.
The explosion of interest in vdW systems stems from the fact
that this is now experimentally feasible. Experimentalists are
able to isolate layers of different materials only one-atom, or
few-atoms, thick, and to combine such layers with increasing
control of the stacking configuration. A striking example of
this tunability is the recent experimental realization of vdW
systems formed by two graphene layers in which the stack-
ing angle, twist angle, can be adjusted to within a fraction of
a degree [8–10]. These experiments [8–10] have shown that,
by tuning the relative twist angle between graphene layers,
the system can become superconducting or insulating. These
remarkable results are just one example of the ways in which
vdW heterostructures can be used to realize electronic systems
with exotic and desirable properties.

Of particular interest are the recent developments involv-
ing vdW systems comprised of two layers in which one of
the layers has a strong spin-orbit coupling (SOC). The main
interest in these systems arises from the possibility of realiz-
ing novel electronic systems by combining such a layer with a
different layer which possesses little or no SOC but with other
interesting properties. For example, graphene possesses only
very weak SOC but has very high electron mobility at room
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temperature. By combining graphene with the 2D surface of
a three-dimensional (3D) topological insulator (TI) [11–13],
the SOC in the graphene layer can be enhanced by an order of
magnitude [14; 15]. Additionally, as we discuss in Sec. V A,
vdW heterostructures with SOC appear to be ideal systems
for realizing unconventional odd-frequency superconducting
states [16]. In contrast to conventional superconducting states,
the defining feature of odd-frequency superconductors is that
they host Cooper pairs which are odd functions in the relative
time, making these states intrinsically-dynamical.

The literature on vdW systems is by now very large, for this
reason we restrict ourselves to a particular subset of vdW sys-
tems that are among the most relevant to the subject of this
special issue and that the authors have studied over the past
few years. We first present, in Sec. II, the model to describe
vdW systems with SOC. To exemplify the application of this
general formalism, in Sec. III, we discuss the case of vdW
heterostructures formed by graphene and a TI. In Sec. IV,
we discuss recent progress on vdW systems which include
both graphene and a layer of transition metal dichalcogenide
(TMD). We then consider, in Sec. V, the case in which one
of the layers is a superconductor, discussing the possibility of
realizing different exotic superconducting states in vdW sys-
tems with SOC. In Sec. VI we present our conclusion and
outlook for future developments.

While the focus of this article is primarily on vdW systems
composed of graphene, topological insulators, and TMDs, we
note that much progress has also been made studying vdW
systems with other components. Notably, we do not discuss
the recently discovered 2D magnetic materials[17–19], which
include: FePS3[20], Cr2GeTe6[21], CrI3[22; 23], VSe2[24],
MnSex[25], and Fe3GeTe2[26; 27]. Similarly, we do not
cover the magnetic proximity effect[28] which has been dis-
cussed in a variety of vdW heterostructures[29; 30]. We also
omit discussion of the intriguing heterostructures which can
be made using monolayers with buckled honeycomb structure
–silicene[31], germanene[32; 33], and stanene[34]–systems
involving nanoribbons [35], and structures formed by differ-
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ent layers of TMDs [36] and twisted TMD homobilayers [37–
40].

II. MODEL

The Hamiltonian describing a generic double-layer vdW
system can be written as H = H1 + H2 + Ht, where
H` (` = 1, 2) is the Hamiltonian associated with layer `
and Ht describes tunneling processes between the two lay-
ers. Here, we write H1 =

∑
kαα′ c

†
kαh(k)1;αα′ckα′ , H2 =∑

kαα′ d
†
kαh(k)2;αα′dkα′ , where c†kα and d†kα (ckα and dkα)

create (annihilate) single electron states in layers 1 and 2, re-
spectively, with momentum k and all other degrees of freedom
described by the composite index α, including spin, orbital,
and particle-hole degrees of freedom. We assume that the tun-
neling between the two layers depends only on the difference
between the positions, r1, r2, of the electrons in the two lay-
ers. As a consequence, the crystal momentum is conserved
during tunneling processes and we have

Ht =
∑

G1G2

∑
α1α2

∑
s1s2

tα1α2(k1 + G1)eiG2·τs2−iG1·τs1 (1)

× c†k1α1
dk2+(G2−G1)α2

+ h.c.

where G` is the reciprocal lattice vector in layer ` and we have
allowed for the possibility that the lattices making-up each of
the two layers may possess basis vectors τ s` . For example, for
the case of graphene we have two basis vectors τ s, which we
can write as τ s = {(0, 0); (a0, 0)}, where a0 is the carbon-
carbon distance.

In a bilayer vdW system, two very different kinds of stack-
ing are possible: commensurate stacking, and incommensu-
rate stacking. In the first case, the vdW bilayer has a peri-
odic structure in real space with a large primitive cell that is
commensurate with the primitive cells of both layers. In the
incommensurate case, no such periodicity exists in real space.
For the communsurate case we obtain a well defined Moiré
pattern.

Given two layers (` = 1, 2) with primitive lattice vectors
a`i (i = 1, 2), in order for a stacking to be commensurate
there must exist four integers m1,m2, n1, n2 such that:

m1a11 +m2a12 = n1a21 + n2a12. (2)

Without loss of generality, using complex numbers to rep-
resent 2D vectors, we can write a11 = a10e

−iθ1 , a12 =
a10e

+iθ1 , a21 = a20e
−i(θ2−θ), a22 = a20e

+i(θ2+θ), where
a`0 is the lattice constant of layer `, 2θ` is the angle between
the primitive lattice vectors of layer `, and θ is the twist angle
between the two layers. Using this notation, considering that
the magnitudes of the two vectors on the left and right hand
side of Eq. (2) have to be same we obtain the following Dio-
phantine equation constraining the integers m1,m2, n1, n2:(
a10
a20

)2 (
m2

1 +m2
2 + 2m1m2 cos 2θ1

)
= n21+n22+2n1n2 cos 2θ2.

(3)

Notice that Eq. (3) does not depend on θ. For a commensurate
stacking the twist angle and the integers m1,m2, n1, n2 are
related via the equation

θ = ln

[
a10(m1e

−iθ1 +m2e
iθ1)

a20(n1e−iθ2 + n2eiθ2)

]
. (4)

The number of commensurate stackings forms a set of mea-
sure zero in the whole space of possible stackings. However,
the experimental evidence suggests [41–45] that 2D vdW
crystals tend to relax into stacking configurations that are, at
least locally, commensurate.

The size of the primitive cell increases very rapidly as the
twist angle θ decreases for θ < 5◦. For this reason, to
treat vdW systems with small twist angles, it is more effi-
cient to use an effective model in momentum space [46–48]
in which only the dominant interlayer tunneling processes are
kept. For small twist angles an accurate description is ob-
tained by keeping only those tunneling processes for which
|k1 − k2| = |G1 −G2| is smallest. For the practically im-
portant case in which the 2D crystals are triangular lattices
and the low energy states (i.e. the states closest to the Fermi
energy) are located at the corners (K and K′ points) of the
hexagonal Brillouin zone (BZ), as for graphene, the minimum
value of |G1−G2| is equal to 2K sin(θ/2), where K = |K|,
and there are three vectors qi = G1 − G2 (i = 1, 2, 3) for
which |qi| = q = 2K sin(θ/2). If we account for all tunnel-
ing processes with |k1−k2| = q we find that the higher-order
tunneling processes generate a honeycomb structure in mo-
mentum space with nearest neighbor points connected by the
vectors qi [48].

The relative contributions of higher-order recursive tunnel-
ing processes is controlled by the parameter γ ≡ t/(ε(q)),
where t is the interlayer tunneling strength between states in
the two layers with momenta that differ by at most q, and
ε(q) = min[ε1(q), ε2(q)], where ε`(q) is the energy of elec-
trons with momentum of magnitude q in layer `. The value of
γ, therefore, controls the size of this momentum space lattice
that one needs to consider to obtain an accurate band structure
for the vdW system. For γ < 1 the size of the required lattice
in momentum space can be quite small. For very small γ it
is sufficient to keep just the first “ring” of interlayer hopping
processes. In this case the effective Hamiltonian matrix takes
the simple form:

Ĥk =


ĥ1(k) t̂†1 t̂†2 t̂†3
t̂1 ĥ2(q1 + k) 0 0

t̂2 0 ĥ2(q2 + k) 0

t̂3 0 0 ĥ2(q3 + k)

 ,

(5)

(6)

where t̂i are matrices containing the interlayer tunneling ele-
ments.

The model described above can be generalized to the case
when one (or more) of the layers forming the vdW system is
superconducting. For concreteness, let us consider the case
when the vdW system is formed by only two layers and only
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one is superconducting; it is fairly straightforward to general-
ize the formalism to more complex situations, such as when
both layers are superconducting. We assume layer 2 is a super-
conductor so that H2 → HSC , and that this superconducting
layer is a 2D crystal with triangular lattice for which the low
energy states are located close to the corners of the BZ, the
K and K points. We also assume simple s-wave pairing so
that the superconducting order parameter ∆SC couples states
at opposite valleys with opposite spin and momentum k, mea-
sured from K (K′). The Hamiltonian for the vdW system is
H =

∑
k Ψ†kSCĤ

SC
12 (k)ΨkSC , with Ψ†kSC = (ψ†k, ψ

T
−k),

ψ†k,α,β1,β2,β3
= (c†k,α, d

†
k+q1,α′1

, d†k+q2,α′2
, d†k+q3+α′3

) (7)

and, to lowest order in γ:

ĤSC
12 (k) =

(
ĥ12(k) ∆̂SCΛ̂

∆̂SCΛ̂† −ĥT12(−k)

)
, (8)

where ĥ12 is the Hamiltonian given by Eq. (5) and Λ̂ is the
matrix with indices describing the internal structure of the su-
perconducting pairs in layer 2. For the case in which layer 1
has spin and sublattice degrees of freedom α and in layer 2,
at low energies, we can assume that the only internal degree
of freedom is the spin, Λ̂ is a 10 × 10 block diagonal matrix
given by [49]:

Λ̂ = diag (0, iσ̂2, iσ̂2, iσ̂2) (9)

where the first block is a 4×4 matrix of zeros and σ̂2 is a 2×2
Pauli matrix in spin space. As we will discuss in Sec. V B,
the form for Λ̂ given by Eq. (9) is applicable to the case of a
vdW structure composed of a superconducting TMD mono-
layer coupled to a graphenic layer, such SLG or BLG.

III. GRAPHENE-TI HETEROSTRUCTURES

In this section we follow the theoretical treatment given in
Ref. [14] to examine the electronic properties of graphene-
TI vdW heterostructures [50; 51]. The original motivation
for studying the properties of a graphene layer coupled to the
2D surface of a 3DTI was the possibility of inducing strong
SOC or novel spin textures in the graphene layer predicted
by theoretical models[14; 52; 53]. Excitingly, this proximity-
induced SOC has recently been observed using a combination
of transport measurements and ab initio calculations[15]. Ad-
ditionally, we also note that the possibiity of inducing Dirac
states with very low Fermi velocity, in which interaction ef-
fects could be greatly enhanced[54], has also been discussed.

In graphene the carbon atoms are arranged in a 2D honey-
comb structure formed by two triangular sublattices,A andB,
with lattice constant ag =

√
3a = 2.46Å, with a = 1.42Å

the carbon-carbon atomic distance. The low energy states
of graphene are located at the K and K′ points of the BZ:
K = (4π/(3ag), 0), K′ = (−4π/(3ag), 0) (and equiva-
lent points connected by reciprocal lattice wave vectors). At
low energies close to the K and K′ points in graphene, the

electrons are well described as massless Dirac fermions with
Hamiltonians

Hg,K =
∑
k

∑
ττ ′

∑
σσ′

c†K+k,τσh
g,K
k;ττ ′,σσ′cK+k,τ ′σ′ ,

ĥg,Kk = (~vFk · τ − µg τ̂0)⊗ σ̂0,
(10)

and

Hg,K′ =
∑
k

∑
ττ ′

∑
σσ′

c†K′+k,τσh
g,K′

k;ττ ′,σσ′cK′+k,τ ′σ′ ,

ĥg,K
′

k = − (~vFk · τ ∗ + µg τ̂0)⊗ σ̂0,
(11)

where c†p,τσ (cp,τσ) is the creation (annihilation) operator
for an electron, in the graphene sheet, with spin σ and two-
dimensional momentum ~p = ~(px, py), k is a wave vector
measured from K (K′), vF = 106 m/s is the Fermi velocity,
µg is the chemical potential, and τ̂i and σ̂i (i = 0, 1, 2, 3)) are
the 2 × 2 Pauli matrices in sublattice and spin space, respec-
tively.

One class of materials for which the effect of spin-orbit cou-
pling on the low energy fermionic states is particularly strong
is the one of three dimensional (3D) topological insulators
(TIs) [11–13]. In these materials the combination of spin-orbit
coupling and time reversal symmetry guarantees the presence
of topologically protected 2D surface states within the band
gap of the bulk states. For this reason, 3D TI materials are in
many respects ideal materials for the creation of novel vdW
heterostructures in which the effect of SOC is significant.

The 2D states at the TI’s surface (TIS) are well described
as massless Dirac fermions with Hamiltonian [55; 56]:

HTIS =
∑
k,σσ′

d†k,σh
TIS
k;σσ′dk,σ′ ,

ĥTIS
k = ~vTI (σ × k) · ẑ− µTI σ̂0,

(12)

where d†k,σ (dk,σ) creates (annihilates) a surface massless
Dirac fermion with spin σ at wave vector k = (kx, ky, 0) mea-
sured from the zone center (Γ-point) of the surface-projected
(BZ), σ = (σ̂1, σ̂2, σ̂3) is the vector of Pauli matrices acting
on spin space, ẑ is the unit vector along the z direction, and
µTI is the chemical potential.

For our purposes, a particularly interesting class of 3D TIs
is the one of the tetradymites, such as Bi2Se3, Bi2Te3, and
Sb2Te3. These 3D TIs have the exceptional property that
the lattice constant of the 111 surface, aTI , is such that:
aTI/(

√
3ag) = 1 + δ with δ < 1% for Sb2Te3 and δ ≈ −3%

(δ ≈ +3%) for Bi2Se3 (Bi2Te3) [14]. As a consequence, in
the limit δ → 0, graphene and the TI surface can be stacked in
a commensurate arrangement as shown, in momentum space,
in Fig. 1 (a). For such a stacking arrangement the corners of
graphene’s BZ are precisely above the Γ̄ points of the TI sur-
face BZ. For this stacking the primitive cell of the heterostruc-
ture corresponds to the primitive cell of the TI’s surface and
therefore the BZ of the resulting vdW system is equal to the
BZ of the TI’s surface. The K and K′ points of the graphene
BZ are folded back to the Γ̄ point, as shown in Fig. 1 (b).
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sublattice τðA;BÞ with spin σð↑;↓Þ at a Dirac wave vector
p measured from one of the two inequivalent BZ corners
(K and K0 valley) located at wave vectors K and K0

(jpj ≪ jKj), τ ¼ ðτx; τyÞ are Pauli matrices acting on the
sublattice space, v1 ≈ 106 m=s is the Fermi velocity, and μ1
is the chemical potential. The TIS states near its Dirac point
can be described by an effective 2D continuum model
[37,38]: HTIS ¼

P
k;σσ0a

†
k;σ½ℏv2ðσ × kÞ · ẑ − μ2%σσ0ak;σ0 ,

where a†k;σ (ak;σ) creates (annihilates) a surface massless
Dirac fermion with spin σ at wave vector k measured from
the zone center (Γ̄ point), σ ¼ ðσx; σyÞ are Pauli matrices
acting on spin space, ẑ is the unit vector along the z direction,
and μ2 is the chemical potential. In Bi2Se3, Bi2Te3, and
Sb2Te3, the Fermi velocity v2 is roughly half of that in
graphene; hence, in the remainder we assume v2 ¼ v1=2.
In our model, we neglect the hexagonal warping of the TIS
bands due to higher-order terms in k inHTIS [39]. The reason
is that such effects are non-negligible only at relative high
energies ≳200 meV away from the TI’s DP [39,40], and we
are only interested in the energy range close to the TI’s DP.
We also neglect effects due to the TI’s bulk states [41] for two
reasons: (i) in current experiments the effect of the bulk states
can be strongly suppressed via chemical and field effect
doping [40,42–44] and by using TI’s thin films [45,46];
(ii) the most interesting situation arises when the bulk states
can be neglected: in this case, the properties of the systems
are dominated not by the TI’s bulk states but by the states
resulting from the hybridization of the graphene and the TI’s
surface states. The form of Ht depends on the stacking
pattern and the interface properties as we show below.
We first consider the graphene-TI heterostructure in affiffiffi
3

p
×

ffiffiffi
3

p
commensurate stacking, in which each TIS atom

is directly underneath a carbon atom. The strongest
tunneling is expected to occur between the directly stacked
atoms, among which all the carbon atoms can be shown to
belong to one sublattice (e.g., sublattice A). As a result of
the periodic tunneling potential, in the BZ of the hetero-
structure the original graphene BZ is folded such that
the two valleys are both located at the zone center over-
lapping with the TIS DP; see Figs. 1(a), 1(b). In this case,
the tunneling Hamiltonian can be written as Ht ¼P

k;λ;τ;σtτa
†
k;σcλ;k;τ;σ þ H:c:, where λ ¼ K, K0 and the

tunneling matrix elements tA ¼ t, tB ¼ 0 are assumed to
be spin and momentum independent. The Hamiltonian for
such a structure takes the form

Ĥk ¼

0

BB@

Ĥg;K
k 0 T̂†

0 Ĥg;K0

k T̂†

T̂ T̂ ĤTIS
k

1

CCA; T̂ ¼
"
t 0 0 0

0 0 t 0

#
;

(1)

where the graphene blocks are 4 × 4 matrices in sublattice
and spin space whereas the TIS block is a 2 × 2 matrix in
spin space.

Insights can be achieved using a perturbative approach
[47]. In this approach, the effect of tunneling processes on
the graphene spectrum is captured by the self-energy
Σ̂kðiωnÞ ¼ V̂†Ĝ0

kðiωnÞV̂, where Ĝ0
kðiωnÞ is the Green’s

function of the TIS and V̂ is the tunneling vertex. In the
basis formed by the eigenstates of the Hamiltonian of
isolated graphene Φλ;k;α;σ, where α ¼ ' refer to the four-
fold degenerate upper and lower bands, we obtain

Σ̂kðiωnÞ ¼
" ΣS

kðiωnÞ e−iðθk−ðπ=2ÞÞΣA
kðiωnÞ

eiðθk−ðπ=2ÞÞΣA
kðiωnÞ ΣS

kðiωnÞ

#

⊗ ðIα þ σxαÞ ⊗ ðIλ þ σxλÞ; (2)

where ΣS=A
k ðiωnÞ ¼ ðt2=2ÞGS=A

k ðiωnÞ with GS=A
k ðiωnÞ ¼

½1=ðiωn − ℏv2k þ μ2Þ ' 1=ðiωn þ ℏv2k þ μ2Þ%=2, and the
first 2 × 2 matrix acts in the spin space, (Iα þ σxα) acts in
the band space, and (Iλþσxλ) acts in the valley space. I is the
2 × 2 identity matrix, and θk ¼ arctanðk y=k xÞ. The appear-
ance of nonzero off-diagonal spin components with phase
factor ½θk − ðπ=2Þ% in the self-energy indicates an induced
helical spin texture on some of the graphene bands. The
renormalized graphene bands in the perturbative approach
coincide with those obtained by direct diagonalization.

(a) (b) (c)

(d)

(e)

(h)

(f)

(i)

(g)

FIG. 1 (color online). (a) Schematics of the
ffiffiffi
3

p
×

ffiffiffi
3

p
stacked

graphene BZ (red or dark) and TIS BZ (green or light) in the
repeated zone scheme without tunneling. (b) Folded BZ after
turning on tunneling. (c) Renormalized bands of SLG-TIS for
μ1 ¼ μ2 ¼ 0. Here, k 0 ≡ 830 meV=ðℏv2Þ. (d) Spin texture on
the bands at E ¼ 80 meV. The arrows indicate spin directions.
(e) Texture of the in-plane component of the pseudospin at
E ¼ 80 meV and (f) full pseudospin orientation on the three
Fermi surfaces closest to the Γ̄ point. (g) Renormalized bands
of BLG-TIS. (h) Renormalized bands of SLG-TIS for μ1 ¼ 0,
μ2 ¼ 100 meV. (i) Rashba-like splitting ΔR in SLG-TIS and
BLG-TIS as a function of t.
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k

1

CCA; T̂ ¼
"
t 0 0 0

0 0 t 0

#
;

(1)

where the graphene blocks are 4 × 4 matrices in sublattice
and spin space whereas the TIS block is a 2 × 2 matrix in
spin space.

Insights can be achieved using a perturbative approach
[47]. In this approach, the effect of tunneling processes on
the graphene spectrum is captured by the self-energy
Σ̂kðiωnÞ ¼ V̂†Ĝ0
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" ΣS

kðiωnÞ e−iðθk−ðπ=2ÞÞΣA
kðiωnÞ

eiðθk−ðπ=2ÞÞΣA
kðiωnÞ ΣS

kðiωnÞ

#

⊗ ðIα þ σxαÞ ⊗ ðIλ þ σxλÞ; (2)

where ΣS=A
k ðiωnÞ ¼ ðt2=2ÞGS=A

k ðiωnÞ with GS=A
k ðiωnÞ ¼

½1=ðiωn − ℏv2k þ μ2Þ ' 1=ðiωn þ ℏv2k þ μ2Þ%=2, and the
first 2 × 2 matrix acts in the spin space, (Iα þ σxα) acts in
the band space, and (Iλþσxλ) acts in the valley space. I is the
2 × 2 identity matrix, and θk ¼ arctanðk y=k xÞ. The appear-
ance of nonzero off-diagonal spin components with phase
factor ½θk − ðπ=2Þ% in the self-energy indicates an induced
helical spin texture on some of the graphene bands. The
renormalized graphene bands in the perturbative approach
coincide with those obtained by direct diagonalization.
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FIG. 1 (color online). (a) Schematics of the
ffiffiffi
3

p
×

ffiffiffi
3

p
stacked

graphene BZ (red or dark) and TIS BZ (green or light) in the
repeated zone scheme without tunneling. (b) Folded BZ after
turning on tunneling. (c) Renormalized bands of SLG-TIS for
μ1 ¼ μ2 ¼ 0. Here, k 0 ≡ 830 meV=ðℏv2Þ. (d) Spin texture on
the bands at E ¼ 80 meV. The arrows indicate spin directions.
(e) Texture of the in-plane component of the pseudospin at
E ¼ 80 meV and (f) full pseudospin orientation on the three
Fermi surfaces closest to the Γ̄ point. (g) Renormalized bands
of BLG-TIS. (h) Renormalized bands of SLG-TIS for μ1 ¼ 0,
μ2 ¼ 100 meV. (i) Rashba-like splitting ΔR in SLG-TIS and
BLG-TIS as a function of t.
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the calculation of the current-induced spin-density response
function; in Sec. III we present our results. Finally, in Sec. IV
we present our conclusions.

II. THEORETICAL FRAMEWORK

In vdW heterostructures [28], the different layers are held
together by vdW forces. This fact greatly enhances the type
of heterostructures that can be created given that the stacking
is not fixed by the chemistry of the elements forming the
heterostructure. With a= 2.46 Å being the lattice constant of
graphene and aT I being the lattice constant of the 111 surface
of a TI in the tetradymite family, we have aT I/a=

√
3(1 + δ),

where δ < 1% for Sb2Te3, δ = −3% for Bi2Se3, and δ = 3%
for Bi2Te3. As a consequence, graphene and the 111 surface
of Sb2Te3, Bi2Se3, and Bi2Te3, to very good approximation,
can be arranged in a

√
3 ×

√
3 commensurate pattern [29–31].

When the stacking is commensurate, the hybridization be-
tween graphene’s and the TI’s surface states is maximized.
This property of graphene, combined with its high mobility,
its intrinsic two-dimensional nature, and its ability at finite
dopings to effectively screen the dominant source of disorder in
TIs, makes graphene the ideal material to consider for creating
a TI heterostructure with a very large Edelstein effect.

TI-graphene heterostructures can be formed via mechanical
transfer [26,32,33]. As a consequence, the stacking pattern and
the shift are fixed by the exfoliation-deposition process and can
be controlled [34]. Density functional theory (DFT) results
show that the binding energy between graphene and the TI
surface depends only very weakly on the rigid shift [29,35–37].
Among the commensurate configurations with free energy
close to the minimum, as obtained from DFT calculations [29],
we consider the stacking configuration shown in Fig. 1(c). For
this configuration, we expect the Edelstein effect to be the
smallest because the graphene bands split into Rashba-like
bands [see Figs. 1(d) and 1(e)] that give an Edelstein effect
with the sign opposite to the one given by TI-like bands
[18]. Therefore, to be conservative, in the remainder of this
paper we consider both the commensurate case for which
the Edelstein effect is expected to be the weakest (i.e., the
case in the graphene sublattice symmetry is broken) and the
extreme case in which the tunneling strength between the TI
and graphene is set to zero.

At low energies, the Hamiltonian for the system can be
written as H =

∑
k ψ

†
kHkψk, where ψ

†
k (ψk) is the creation

(annihilation) spinor for a fermionic excitation with momen-
tum k, and

Hk =

⎛

⎜⎝
ĤG,K

k 0 T̂ †

0 ĤG,K ′

k T̂ †

T̂ T̂ Ĥ T I
k

⎞

⎟⎠, T̂ =
(

t 0 0 0
0 0 t 0

)
,

(1)
where ĤG,K

k (ĤG,K ′

k = [ĤG,K
k ]∗) is the Hamiltonian describ-

ing graphene’s low-energy states around the K (K ′) of the
Brillouin zone. For SLG ĤG,K

k = Ĥ SLG,K , and for BLG
ĤG,K

k = Ĥ BLG,K. Ĥ T I
k is the Hamiltonian describing the

TI’s surface states, and T̂ is the matrix describing spin-
and momentum-conserving tunneling processes between the
graphene layer and the TI’s surface [31], with t being the tun-

FIG. 1. Sketch of (a) a TI-graphene-FM and (b) a magnetically
doped TI-graphene heterostructure. In (a) the random charges are
shown. In (b) the spheres represent the magnetic dopant; the random
charges are not shown explicitly. (c) Atom arrangement for the
commensurate stacking considered. (d) Bands for TI-SLG for # = 0,
δµ = 0. (e) Bands for TI-BLG for # = 20 meV and δµ = 0. (f) Spin
texture on the Fermi surface formed by the bands shown in (d) for
ϵF = 100 meV.

neling strength. The TI’s bulk states are assumed to be gapped.
This condition is realized, for example, in novel ternary or qua-
ternary tetradymites, such as Bi2Te2Se and Bi2−xSbxTe3−ySey ,
for which it has been shown experimentally that the bulk
currents have been completely eliminated [38–45]. For
SLG we have Ĥ SLG,K

k = h̄vgkσ0[cos(φk)τx + sin(φk)τy ] −
µg , where vg ≈ 106 m/s is graphene’s Fermi velocity,
k = |k|, φk = arctan(ky/kx ), σi and τi are the Pauli ma-
trices in spin and sublattice space, respectively, and µg

is the chemical potential. For BLG we have Ĥ BLG,K
k =

h̄2k2/(2m∗)σ0[cos(2φk)τx + sin(2φk)τy ] −µg , where m∗ ≈
0.035me is the electron’s effective mass. For the TI’s surface
states, we have Ĥ T I

k = h̄vT I (kyσx − kxσy ) −µTIσ0, where
vT I ≈ vg/2 and µTI is the chemical potential on the TI’s
surface. In the following the Fermi energy ϵF is measured
from the neutrality point of the SLG (or the BLG), and
δµ ≡ µT I −µg .

In a magnetically doped TI, below the Curie temperature,
the low-energy Hamiltonian for the TI-graphene
quasiparticles, Eq. (1), has an additional term, Hex,
describing the exchange interaction between the quasiparticles
and the magnetization M. Hex = #

∫
(

m̂ · ŝ dr/(, where
# is the strength of the exchange interaction, m̂ ≡ M/|M|,
ŝ ≡ s/|s|, with s being the TI-graphene spin-density operator,
and ( is the two-dimensional (2D) area of the sample. For
a TI-graphene-ferromagnet heterostructure the ferromagnet
(FM) will also cause simply the addition of the term Hex to
the Hamiltonian for the quasiparticles, Eq. (1), as long as
the FM is an insulator and is placed on graphene or bilayer
graphene via mechanical exfoliation, likely with a large twist

235419-2

(a) (b)

(c)

Figure 1. (a) Schematic of the first seven extended Brillouin zones
of graphene, shown in red, superimposed on the extended Brillouin
zones of a TI, shown in green, for the case of

√
3×
√

3 commensurate
stacking. (b) Depiction of the folded Brillouin zone for the same
stacking as in (a). (c) The real space picture associated with the

√
3×√

3 graphene-TI commensurate stacking. Adapted with permission
from Phys. Rev. Lett. 112, 096802 (2014).

In the remainder of this section we limit our discussion
to the cases in which the TI is Bi2Se3, Bi2Te3, or Sb2Te3,
for which vTI ≈ vg/2, given that these materials allow the
formation of a graphene-TI vdW system with commensurate
stacking and therefore significant hybridization between the
graphene and TI surface states. Experimentally it turns out
to be difficult to pin the Fermi energy of Bi2Se3, Bi2Te3,
Sb2Te3 in the middle of the bulk gap so that only the surface
states play an active role. One way in which this problem has
been overcome is by considering the corresponding ternary
and quaternary compounds [57–63].

Different commensurate stacking configurations, corre-
sponding to Fig. 1, can be realized by rigid relative shifts of
the graphene and TI lattices. Ab-initio results [52] suggest
that the lowest energy stacking is the one for which the TI sur-
face atoms are located at the center of the hexagons forming
the graphene structure. However, the binding energy for the
structure in which the TI surface atoms are directly below the
carbon atoms of graphene (either the ones forming the A sub-
lattice, or the ones forming the B sublattice) is only marginally
higher [52]. Considering that, experimentally, vdW systems
are obtained via mechanical exfoliation that allows the real-
ization of, long-lived, metastable states, and the fact that when
the TI’s surface atoms are directly below the carbon atoms
of graphene a stronger hybridization of the graphene and TI
states is realized, it is interesting to consider this situation.

In the
√

3 ×
√

3 commensurate stacking, in which each
atom on the TI surface is directly underneath a carbon atom,
the dominant interlayer tunneling term is the one between the
atoms on sublattice A (or B) and the TI atoms so that, in mo-
mentum space, the tunneling Hamiltonian can be written as
Ht =

∑
k,λ,τ,σ tτd

†
k,σcλ,k,τ,σ + h.c., where λ = K,K ′ and

tA = t, tB = 0 are the tunneling matrix elements assumed to
be spin and momentum independent. The Hamiltonian matrix

for such a structure takes the form

Ĥk =

 ĥg,K
k 0 t̂†

0 ĥg,K′

k t̂†

t̂ t̂ ĥTIS
k

 , t̂ =

(
t 0 0 0
0 0 t 0

)
, (13)

where the graphene blocks are 4 × 4 matrices in sublattice
and spin space and the block describing the TI’s surface states
is a 2 × 2 matrix in spin space. We note that an analogous
Hamiltonian can also be constructed for the similar vdW het-
erostructure in which single layer graphene (SLG) is replaced
by bilayer graphene (BLG) to form a BLG-TI system[14].

The simple Hamiltonian in Eq. (13) allows us to understand
the qualitative features of the bands resulting from the hy-
bridization between the graphene states and the states of the TI
surface. Fig. 2 (a) shows the bands obtained by diagonalizing
Ĥk assuming µg = µTI = 0 and t = 45 meV. From Fig. 2 (a),
we see that the 4-fold degeneracy of the graphene states (spin
and valley degrees of freedom) is partially lifted as two spin-
split Rashba bands appear (shown in red and blue). However,
we also see that two of the original graphene states at the K
and K′ points remain spin degenerate (shown in grey), due to
the fact that in the chosen configuration one sublattice does
not couple to the TI. Moreover, the TI surface bands (shown
in green) become quadratic at low energy as a consequence of
hybridization with the graphene states.

sublattice τðA;BÞ with spin σð↑;↓Þ at a Dirac wave vector
p measured from one of the two inequivalent BZ corners
(K and K0 valley) located at wave vectors K and K0

(jpj ≪ jKj), τ ¼ ðτx; τyÞ are Pauli matrices acting on the
sublattice space, v1 ≈ 106 m=s is the Fermi velocity, and μ1
is the chemical potential. The TIS states near its Dirac point
can be described by an effective 2D continuum model
[37,38]: HTIS ¼

P
k;σσ0a

†
k;σ½ℏv2ðσ × kÞ · ẑ − μ2%σσ0ak;σ0 ,

where a†k;σ (ak;σ) creates (annihilates) a surface massless
Dirac fermion with spin σ at wave vector k measured from
the zone center (Γ̄ point), σ ¼ ðσx; σyÞ are Pauli matrices
acting on spin space, ẑ is the unit vector along the z direction,
and μ2 is the chemical potential. In Bi2Se3, Bi2Te3, and
Sb2Te3, the Fermi velocity v2 is roughly half of that in
graphene; hence, in the remainder we assume v2 ¼ v1=2.
In our model, we neglect the hexagonal warping of the TIS
bands due to higher-order terms in k inHTIS [39]. The reason
is that such effects are non-negligible only at relative high
energies ≳200 meV away from the TI’s DP [39,40], and we
are only interested in the energy range close to the TI’s DP.
We also neglect effects due to the TI’s bulk states [41] for two
reasons: (i) in current experiments the effect of the bulk states
can be strongly suppressed via chemical and field effect
doping [40,42–44] and by using TI’s thin films [45,46];
(ii) the most interesting situation arises when the bulk states
can be neglected: in this case, the properties of the systems
are dominated not by the TI’s bulk states but by the states
resulting from the hybridization of the graphene and the TI’s
surface states. The form of Ht depends on the stacking
pattern and the interface properties as we show below.
We first consider the graphene-TI heterostructure in affiffiffi
3

p
×

ffiffiffi
3

p
commensurate stacking, in which each TIS atom

is directly underneath a carbon atom. The strongest
tunneling is expected to occur between the directly stacked
atoms, among which all the carbon atoms can be shown to
belong to one sublattice (e.g., sublattice A). As a result of
the periodic tunneling potential, in the BZ of the hetero-
structure the original graphene BZ is folded such that
the two valleys are both located at the zone center over-
lapping with the TIS DP; see Figs. 1(a), 1(b). In this case,
the tunneling Hamiltonian can be written as Ht ¼P

k;λ;τ;σtτa
†
k;σcλ;k;τ;σ þ H:c:, where λ ¼ K, K0 and the

tunneling matrix elements tA ¼ t, tB ¼ 0 are assumed to
be spin and momentum independent. The Hamiltonian for
such a structure takes the form

Ĥk ¼

0

BB@

Ĥg;K
k 0 T̂†

0 Ĥg;K0

k T̂†

T̂ T̂ ĤTIS
k

1

CCA; T̂ ¼
"
t 0 0 0

0 0 t 0

#
;

(1)

where the graphene blocks are 4 × 4 matrices in sublattice
and spin space whereas the TIS block is a 2 × 2 matrix in
spin space.

Insights can be achieved using a perturbative approach
[47]. In this approach, the effect of tunneling processes on
the graphene spectrum is captured by the self-energy
Σ̂kðiωnÞ ¼ V̂†Ĝ0

kðiωnÞV̂, where Ĝ0
kðiωnÞ is the Green’s

function of the TIS and V̂ is the tunneling vertex. In the
basis formed by the eigenstates of the Hamiltonian of
isolated graphene Φλ;k;α;σ, where α ¼ ' refer to the four-
fold degenerate upper and lower bands, we obtain

Σ̂kðiωnÞ ¼
" ΣS

kðiωnÞ e−iðθk−ðπ=2ÞÞΣA
kðiωnÞ

eiðθk−ðπ=2ÞÞΣA
kðiωnÞ ΣS

kðiωnÞ

#

⊗ ðIα þ σxαÞ ⊗ ðIλ þ σxλÞ; (2)

where ΣS=A
k ðiωnÞ ¼ ðt2=2ÞGS=A

k ðiωnÞ with GS=A
k ðiωnÞ ¼

½1=ðiωn − ℏv2k þ μ2Þ ' 1=ðiωn þ ℏv2k þ μ2Þ%=2, and the
first 2 × 2 matrix acts in the spin space, (Iα þ σxα) acts in
the band space, and (Iλþσxλ) acts in the valley space. I is the
2 × 2 identity matrix, and θk ¼ arctanðk y=k xÞ. The appear-
ance of nonzero off-diagonal spin components with phase
factor ½θk − ðπ=2Þ% in the self-energy indicates an induced
helical spin texture on some of the graphene bands. The
renormalized graphene bands in the perturbative approach
coincide with those obtained by direct diagonalization.

(a) (b) (c)

(d)

(e)

(h)

(f)

(i)

(g)

FIG. 1 (color online). (a) Schematics of the
ffiffiffi
3

p
×

ffiffiffi
3

p
stacked

graphene BZ (red or dark) and TIS BZ (green or light) in the
repeated zone scheme without tunneling. (b) Folded BZ after
turning on tunneling. (c) Renormalized bands of SLG-TIS for
μ1 ¼ μ2 ¼ 0. Here, k 0 ≡ 830 meV=ðℏv2Þ. (d) Spin texture on
the bands at E ¼ 80 meV. The arrows indicate spin directions.
(e) Texture of the in-plane component of the pseudospin at
E ¼ 80 meV and (f) full pseudospin orientation on the three
Fermi surfaces closest to the Γ̄ point. (g) Renormalized bands
of BLG-TIS. (h) Renormalized bands of SLG-TIS for μ1 ¼ 0,
μ2 ¼ 100 meV. (i) Rashba-like splitting ΔR in SLG-TIS and
BLG-TIS as a function of t.
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(K and K0 valley) located at wave vectors K and K0

(jpj ≪ jKj), τ ¼ ðτx; τyÞ are Pauli matrices acting on the
sublattice space, v1 ≈ 106 m=s is the Fermi velocity, and μ1
is the chemical potential. The TIS states near its Dirac point
can be described by an effective 2D continuum model
[37,38]: HTIS ¼

P
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†
k;σ½ℏv2ðσ × kÞ · ẑ − μ2%σσ0ak;σ0 ,

where a†k;σ (ak;σ) creates (annihilates) a surface massless
Dirac fermion with spin σ at wave vector k measured from
the zone center (Γ̄ point), σ ¼ ðσx; σyÞ are Pauli matrices
acting on spin space, ẑ is the unit vector along the z direction,
and μ2 is the chemical potential. In Bi2Se3, Bi2Te3, and
Sb2Te3, the Fermi velocity v2 is roughly half of that in
graphene; hence, in the remainder we assume v2 ¼ v1=2.
In our model, we neglect the hexagonal warping of the TIS
bands due to higher-order terms in k inHTIS [39]. The reason
is that such effects are non-negligible only at relative high
energies ≳200 meV away from the TI’s DP [39,40], and we
are only interested in the energy range close to the TI’s DP.
We also neglect effects due to the TI’s bulk states [41] for two
reasons: (i) in current experiments the effect of the bulk states
can be strongly suppressed via chemical and field effect
doping [40,42–44] and by using TI’s thin films [45,46];
(ii) the most interesting situation arises when the bulk states
can be neglected: in this case, the properties of the systems
are dominated not by the TI’s bulk states but by the states
resulting from the hybridization of the graphene and the TI’s
surface states. The form of Ht depends on the stacking
pattern and the interface properties as we show below.
We first consider the graphene-TI heterostructure in affiffiffi
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×
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commensurate stacking, in which each TIS atom

is directly underneath a carbon atom. The strongest
tunneling is expected to occur between the directly stacked
atoms, among which all the carbon atoms can be shown to
belong to one sublattice (e.g., sublattice A). As a result of
the periodic tunneling potential, in the BZ of the hetero-
structure the original graphene BZ is folded such that
the two valleys are both located at the zone center over-
lapping with the TIS DP; see Figs. 1(a), 1(b). In this case,
the tunneling Hamiltonian can be written as Ht ¼P

k;λ;τ;σtτa
†
k;σcλ;k;τ;σ þ H:c:, where λ ¼ K, K0 and the

tunneling matrix elements tA ¼ t, tB ¼ 0 are assumed to
be spin and momentum independent. The Hamiltonian for
such a structure takes the form
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k

1

CCA; T̂ ¼
"
t 0 0 0

0 0 t 0

#
;

(1)

where the graphene blocks are 4 × 4 matrices in sublattice
and spin space whereas the TIS block is a 2 × 2 matrix in
spin space.

Insights can be achieved using a perturbative approach
[47]. In this approach, the effect of tunneling processes on
the graphene spectrum is captured by the self-energy
Σ̂kðiωnÞ ¼ V̂†Ĝ0

kðiωnÞV̂, where Ĝ0
kðiωnÞ is the Green’s

function of the TIS and V̂ is the tunneling vertex. In the
basis formed by the eigenstates of the Hamiltonian of
isolated graphene Φλ;k;α;σ, where α ¼ ' refer to the four-
fold degenerate upper and lower bands, we obtain

Σ̂kðiωnÞ ¼
" ΣS
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where ΣS=A
k ðiωnÞ ¼ ðt2=2ÞGS=A

k ðiωnÞ with GS=A
k ðiωnÞ ¼

½1=ðiωn − ℏv2k þ μ2Þ ' 1=ðiωn þ ℏv2k þ μ2Þ%=2, and the
first 2 × 2 matrix acts in the spin space, (Iα þ σxα) acts in
the band space, and (Iλþσxλ) acts in the valley space. I is the
2 × 2 identity matrix, and θk ¼ arctanðk y=k xÞ. The appear-
ance of nonzero off-diagonal spin components with phase
factor ½θk − ðπ=2Þ% in the self-energy indicates an induced
helical spin texture on some of the graphene bands. The
renormalized graphene bands in the perturbative approach
coincide with those obtained by direct diagonalization.
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FIG. 1 (color online). (a) Schematics of the
ffiffiffi
3

p
×

ffiffiffi
3

p
stacked

graphene BZ (red or dark) and TIS BZ (green or light) in the
repeated zone scheme without tunneling. (b) Folded BZ after
turning on tunneling. (c) Renormalized bands of SLG-TIS for
μ1 ¼ μ2 ¼ 0. Here, k 0 ≡ 830 meV=ðℏv2Þ. (d) Spin texture on
the bands at E ¼ 80 meV. The arrows indicate spin directions.
(e) Texture of the in-plane component of the pseudospin at
E ¼ 80 meV and (f) full pseudospin orientation on the three
Fermi surfaces closest to the Γ̄ point. (g) Renormalized bands
of BLG-TIS. (h) Renormalized bands of SLG-TIS for μ1 ¼ 0,
μ2 ¼ 100 meV. (i) Rashba-like splitting ΔR in SLG-TIS and
BLG-TIS as a function of t.
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(a) (b)

Figure 2. (a) Band structure for the
√

3 ×
√

3 commensurate
graphene-TI structure described by Eq. (13), assuming µg = µTI =
0 and t = 45 meV. (b) The in-plane spin projection of the eigenstates
associated with the bands in (a), evaluated at the energyE = 80meV.
Adapted with permission from Phys. Rev. Lett. 112, 096802 (2014).

We now discuss the case of stacking configurations that de-
viate from the

√
3×
√

3 configurations discussed above either
because of a small twist angle θ or because of a mismatch
of the graphene and TI lattice constants. Figs. 3 (a) and (b)
show how the orientations of the TI and graphene BZs are
affected by the presence of a twist angle and a lattice mis-
match, respectively. We see that, due to the conservation



5

of the crystal momentum, the states at the K (K′) point of
graphene now tunnel to the TI surface states with momentum
qi (i = 1, 2, 3). For the twisted case, the magnitude of this
vector is |qj | ≡ q = 2K sin(θ/2), while for the case of a
lattice mismatch we have q = |δ/(1 + δ)|K.

Figure 1(c) shows the band structure of a graphene-TI
heterostructure with t ¼ 4 5 meV and μ1 ¼ μ2 ¼ 0. We see
that the fourfold degeneracy of the original graphene bands
is partially lifted. In our model the eigenstates of the
hybridized bands can be calculated explicitly. This allows
us to (i) obtain directly both the spin and pseudospin confi-
guration on all the renormalized bands, Figs. 1(d)–1(f);
(ii) show that, as expected from the form of the self-energy,
on the two gapped bands (forming the two smaller Fermi
surfaces) the in-plane spin is locked perpendicular to
the momentum and winds around the Γ̄ point either
clockwise or counterclockwise, analogous to a system with
Rashba-type SO coupling, Fig. 1(d); (iii) show that the spin
helicity of the hybridized bands can be different (opposite)
to the helicity of the original TI’s band, Fig. 1(d); (iv) show
that the two degenerate bands, seemingly equal to the
original graphene (or BLG) bands, are in reality antisym-
metric combinations of the states of isolated graphene
(or BLG) at opposite valleys ð1=

ffiffiffi
2

p
ÞðΦK;α;↑ − ΦK0;α;↑Þ and

ð1=
ffiffiffi
2

p
ÞðΦK;α;↓ − ΦK0;α;↓Þ, α ¼ $; and (v) show that the

two degenerate bands have a unique pseudospin structure,
very different from the pseudospin structure of both the
original K and K0 valleys, which we expect would affect
transport measurements, Figs. 1(e), 1(f). In addition, our
model is easily generalized to the case of BLG. The results
of Fig. 1(g) show the bands of a BLG-TI heterostructure and
reveal that the enhancement, due to the proximity effect, of
the SO coupling in BLG is much larger than in single layer
graphene (SLG), Fig. 1(i). This is due mostly to the fact
that, at low energies, BLG has a much higher density of
states (DOS) than SLG. Finally, we consider the effect of a
difference δμ ¼ μ2 − μ1 between the TI’s and graphene
chemical potential. By varying δμ the value of k for which
the pristine bands of the TI and graphene cross and for
which the hybridization is stronger can be tuned. Figure 1(h)
shows the case for which μ2 ¼ 100 meV and μ1 ¼ 0. We
see that in this case the induced Rashba splitting is stronger
than when μ2 ¼ μ2 ¼ 0. This is due to the fact that the
density of states increases as we move away from the DP.
We now consider incommensurate structures. The

tunneling matrix elements can be written as

Tτðk2;k1Þ ¼
X

G1;G2

tðk1 þG1Þffiffiffi
3

p
Ω1

eiG1·dτ δk2þG2;k1þG1
(3)

where the crystal momentum is conserved by the tunneling
process in which a graphene quasiparticle of wave vector k1

residing on sublattice τ hops to a TIS state with wave vector
k2. Ω1 is the graphene unit cell area, and dA ¼ 0, dB ¼
ð−a0; 0Þ are the positions of the two carbon atoms in a unit
cell with carbon-carbon distance a0. fG1g, fG2g are the
reciprocal lattice vectors of graphene and TIS, respectively.
tðkÞ are the Fourier amplitudes of the tunneling potential tðrÞ
assumed to be a smooth function of r, the spatial separation
between graphene and TIS atoms projected onto the interface
plane. Given that the graphene-TIS separation distance

exceeds the interatomic distance in each material, the dom-
inant tunneling amplitudes of tðkÞ near the graphene DP
are the ones with jkj ¼ KD ≡ jKj. This allows us to restrict
the sum over fG1g to three vectors: g1ð¼ 0Þ, g2, g3, where
the latter two connect a valley with its equivalent first BZ
corners. For small wave vectors measured from the resp-
ective DP, we haveHt ¼

P
p;τ;σ

P
3
j;l;…¼1½Tτ;ja

†
pþqj;σcp;τ;σþ

T'
τ;lc

†
pþqjþq̄l;τ;σapþqj;σ þ…(, where Tτ;j ¼ t0eigj·dτ with

t0 ≡ tðKDÞ=ð
ffiffiffi
3

p
Ω1Þ, fqjg are the offset vectors between

the grapheneDP and the three “nearest-neighboring”TISDP,
and q̄l ∈ f−qjg, as shown in Fig. 2. The repeated action
of the “nonlocal” coupling generates a k -space lattice [20].
For a rotation angle θ, the separation between the offset DP
is jqjj≡ q ¼ 2KD sinðθ=2Þ, for the lattice mismatch case,
q ¼ jδ=ð1þ δÞjKD, Fig. 2.
For very small twist angles or lattice mismatches such

that the dimensionless parameter γ ≡ t0=ðℏv2qÞ > 1, gra-
phene and TIS will be strongly coupled. However, when
γ < 1, a weak coupling theory is valid [12,20,22]. In this
case, to investigate the low-energy spectrum of graphene,
we can truncate the k -space lattice and obtain the
Hamiltonian

Ĥp ¼

0

BBB@

Ĥg;K
p T̂†

1 T̂†
2 T̂†

3

T̂1 ĤTIS
q1þp 0 0

T̂2 0 ĤTIS
q2þp 0

T̂3 0 0 ĤTIS
q3þp

1

CCCA;

T̂1 ¼
"
t0 t0 0 0

0 0 t0 t0

#
;

T̂2 ¼
"
t0 t0e−ið2π=3Þ 0 0

0 0 t0 t0e−ið2π=3Þ

#
;

T̂3 ¼
"
t0 t0eið2π=3Þ 0 0

0 0 t0 t0eið2π=3Þ

#
: (4 )

A similar Hamiltonian is valid for the K0 valley [48]. In the
absence of twist and mismatch, the system reduces to the
commensurate structure, giving rise to T̂ ¼ T̂1 þ T̂2 þ T̂3

so that t0 ¼ t=3.
Figures 3(a)–3(c) show the band and spin structure

around the K point for an incommensurate graphene-TI

(a) (b)

FIG. 2 (color online). Schematics of the graphene andTISBZs in
an incommensurate structure formed from (a) a twist and (b) a lattice
mismatch, with the correspondingqj vectors at theK andK0 points.
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Figure 3. (a) Schematic of the first seven extended Brillouin zones
of graphene (red) superimposed on the extended Brillouin zones of a
TI (green) with a slight rotation away from precise

√
3 ×
√

3 com-
mensurate stacking. Also shown the vectors qi describing the dis-
placement of the corners of the first Brillouin zone of graphene from
the nearest Γ̄ points in the TI surface. (b) Similar schematic to (a)
for the case when the deviation from the

√
3 ×
√

3 commensurate
stacking is caused by a lattice mismatch. Also shown the vectors qi

describing the displacement of the corners of the first Brillouin zone
of graphene from the nearest Γ̄ points in the TI surface for this case.
Adapted with permission from Phys. Rev. Lett. 112, 096802 (2014).

Assuming γ << 1, we can use the simple Hamiltonian in
Eq. (5), with ĥ1 = ĥg,K , ĥ2 = hTIS and

t̂1 =

(
t′ t′ 0 0
0 0 t′ t′

)
, t̂2 =

(
t′ t′e−i

2π
3 0 0

0 0 t′ t′e−i
2π
3

)
,

t̂3 =

(
t′ t′ei

2π
3 0 0

0 0 t′ t′ei
2π
3

)
.

with t′ = t/3. A similar Hamiltonian is valid for the K ′-
valley [14]. By diagonalizing the resulting Hamiltonian we
obtain the low energy band structure. Figure 4 (a) shows the
bands along the path ABCDA shown in Fig. 3 (a) for the case
when γ = 0.2. Assuming t = 45 meV, this value of γ corre-
sponds to a deviation from the

√
3 ×
√

3 stacking by a twist
angle θ = 0.76◦. Fig. 4 (b) shows the spin texture on the
Fermi surface with εF = vTIq/2. Similar to the

√
3 ×
√

3
commensurate case shown in Fig. 2, we see that the strong
SOC of the TI induces a strong spin polarization of the states
of the hybridized system even when the stacking configuration
deviates from the ideal

√
3×
√

3 one.

A. Transport properties

The intrinsic SOC in graphene and bilayer graphene is neg-
ligible so that the spin degree of freedom does not affect sig-
nificantly the transport properties [7; 64–70]. In the presence
of SOC, charge and spin transport become coupled [71–73].
Therefore, in vdW systems with SOC we expect that, in gen-
eral, transport properties will be spin-dependent and that such
properties could differ considerably from isolated systems

heterostructure with γ¼0.2, t0 ¼ 15 meV, and μ1 ¼ μ2 ¼ 0.
The result for the K0 point is simply a 60° rotation of the
former. The results of Fig. 3 show that (i) the original
twofold spin degeneracy of the graphene Dirac cone is
completely lifted; (ii) of the two original degenerate linear
bands one is now fully gapped and the other is no longer
linear at the DP; (iii) the bands acquire nontrivial in-plane
spin textures. The key property of graphene-TI hetero-
structures is that the features of the band structure and spin
texture can be controlled via the twist angle. By changing
the value of θ, for fixed t0 and energy, the distance between
the Fermi pockets shown in Figs. 3(b) and 3(c) and their
size can be tuned. In addition, the splitting of the low-
energy bands Δ can be controlled as shown in Fig. 3(d).
In the presence of surface roughness and/or phonons

tunneling processes with finite momentum transfer are
allowed. We expect the effect of such processes to be weak;
however, to gain some insight, we consider the case in which
the tunneling amplitude has a Gaussian profilewith respect to
the momentum transferq: tq¼ t0 exp ð−jqj2=ð2σ2ÞÞ, where
t0 characterizes the tunneling strength and σ the variance. To
qualitatively understand the effect of suchprocesses,we study
the case of an isolated graphene Dirac cone separated by a
large wave vectorQ from the closest TIS DP. With the use of
the perturbative approach outlined above, the proximity effect
on the graphene spectrum is captured by the self-energy

Σ̂QþpðiωnÞ
¼ ðIα þ σxαÞ

⊗

 
ΣS
QþpðiωnÞ e−iðθQþp−π=2ÞΣA

QþpðiωnÞ

eiðθQþp−π=2ÞΣA
QþpðiωnÞ ΣS

QþpðiωnÞ

!

(5)

with

ΣS=A
QþpðiωnÞ ¼

t20Ω2

2π
exp

!
− jQþ pj2

σ2

" Z
∞

0
k exp

!
− k 2

σ2

"

× I0=1

#
2jQþ pj

σ2
k
$
GS=A

k ðiωnÞdk ;

where InðxÞ, n ¼ 0, 1 are the modified Bessel functions of
the first kind. The form of the phase factors in the off-
diagonal spin components of Σ̂ implies an induced spin
texture on graphene with the spin perpendicular to the wave
vector Qþ p, Fig. 4(a). We find, Fig. 4(b), that also in this
case the spin degenerate bands are split and the remaining
gapless bands are no longer linear. Figures 4(c) and 4(d)
show the size of the gap between spin-split bands as a
function of t0 and σ, respectively.
In conclusion, we have studied the proximity effect of a

strong 3D TI on the low-energy spectrum of graphene in
commensurate and incommensurate structures as well as in a
case with surface roughness. To be able to take into account
the incommensurability, we have developed a continuous
model. Using this model we have been able to identify, both
for commensurate and incommensurate stacking, the spin and
pseudospin structure of all the hybridizedbands and show that
it is very unusual and likely to affect transport measurements.
We have also shown that the enhancement of the SO coupling
is in general much stronger in BLG than in graphene. In
addition, we have shown that properties of these bands and
their spin structures can be substantially tuned by varying the
relative rotation between the graphene lattice and the TI’s
lattice.
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FIG. 3 (color online). (a) The band structure along the path
A-B-C-D-A indicated in Fig. 2(a). [(b),(c)] Spin texture on the
bands at different energies; E0 ≡ ℏv2q ¼ t0=γ. (d) Splitting (Δ) of
the low-energy bands as a function of twist angle for t0 ¼
30 meV and t0 ¼ 15 meV.
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FIG. 4 (color online). (a) Schematics of the induced spin texture
on graphene (right) from the TIS spin helix (left). (b) Renormal-
ized graphene bands (solid lines) for t0 ¼ 100 meV, σ ¼ 2k 0.
Spin-split gap (Δ) as a function of (c) t0 and (d) σ.
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Figure 4. (a) Band structure for a twisted graphene-TI system for the
case when γ = 0.2, calculated by diagonalizing the Hamiltonian in
Eq. (5) along the ABCDA path indicated in Fig. 3. (b) The in-plane
spin projection of the eigenstates associated with the bands in (a),
evaluated at the energy E = 0.5E0 where E0 is indicated in (a).
Adapted with permission from Phys. Rev. Lett. 112, 096802 (2014).

with SOC. Exemplary in this respect are the vdW systems
formed by a layer with strong SOC, such as a TMD mono-
layer, and either graphene or bilayer graphene. In graphene-
TI vdW systems the combination of the high mobility of
graphene, the strong SOC of the TI, and the increased screen-
ing [74–78] of impurities due to the presence of the graphene
layer [79], can lead to very strong spin-dependent effects, such
as a giant Edelstein effect [80]. To illustrate the potential for
realizing spin-dependent transport effects in vdW systems in
which one layer has a strong SOC we discuss the case of a
graphene-TI-Ferromagnet vdW system [80], shown schemat-
ically in Fig. 5 (a).

Throughout this section, we assume that the ferromagnet
(FM) is insulating so that its presence does not significantly
alter the bands of the graphene-TI part of the vdW heterostruc-
ture. The main effect of the insulating FM layer is to induce
an exchange field for the electrons in the heterostructure. This
effect is captured by adding the term Hex ∝ M · σ, where
M is the magnetization of the insulating FM, to the Hamilto-
nian discussed in Sec. III. The presence of this additional term
simply causes a spin-splitting that we denote by ∆.RODRIGUEZ-VEGA, SCHWIETE, SINOVA, AND ROSSI PHYSICAL REVIEW B 96, 235419 (2017)

the calculation of the current-induced spin-density response
function; in Sec. III we present our results. Finally, in Sec. IV
we present our conclusions.

II. THEORETICAL FRAMEWORK

In vdW heterostructures [28], the different layers are held
together by vdW forces. This fact greatly enhances the type
of heterostructures that can be created given that the stacking
is not fixed by the chemistry of the elements forming the
heterostructure. With a= 2.46 Å being the lattice constant of
graphene and aT I being the lattice constant of the 111 surface
of a TI in the tetradymite family, we have aT I/a=

√
3(1 + δ),

where δ < 1% for Sb2Te3, δ = −3% for Bi2Se3, and δ = 3%
for Bi2Te3. As a consequence, graphene and the 111 surface
of Sb2Te3, Bi2Se3, and Bi2Te3, to very good approximation,
can be arranged in a

√
3 ×

√
3 commensurate pattern [29–31].

When the stacking is commensurate, the hybridization be-
tween graphene’s and the TI’s surface states is maximized.
This property of graphene, combined with its high mobility,
its intrinsic two-dimensional nature, and its ability at finite
dopings to effectively screen the dominant source of disorder in
TIs, makes graphene the ideal material to consider for creating
a TI heterostructure with a very large Edelstein effect.

TI-graphene heterostructures can be formed via mechanical
transfer [26,32,33]. As a consequence, the stacking pattern and
the shift are fixed by the exfoliation-deposition process and can
be controlled [34]. Density functional theory (DFT) results
show that the binding energy between graphene and the TI
surface depends only very weakly on the rigid shift [29,35–37].
Among the commensurate configurations with free energy
close to the minimum, as obtained from DFT calculations [29],
we consider the stacking configuration shown in Fig. 1(c). For
this configuration, we expect the Edelstein effect to be the
smallest because the graphene bands split into Rashba-like
bands [see Figs. 1(d) and 1(e)] that give an Edelstein effect
with the sign opposite to the one given by TI-like bands
[18]. Therefore, to be conservative, in the remainder of this
paper we consider both the commensurate case for which
the Edelstein effect is expected to be the weakest (i.e., the
case in the graphene sublattice symmetry is broken) and the
extreme case in which the tunneling strength between the TI
and graphene is set to zero.

At low energies, the Hamiltonian for the system can be
written as H =

∑
k ψ

†
kHkψk, where ψ

†
k (ψk) is the creation

(annihilation) spinor for a fermionic excitation with momen-
tum k, and

Hk =

⎛

⎜⎝
ĤG,K

k 0 T̂ †

0 ĤG,K ′

k T̂ †

T̂ T̂ Ĥ T I
k

⎞

⎟⎠, T̂ =
(

t 0 0 0
0 0 t 0

)
,

(1)
where ĤG,K

k (ĤG,K ′

k = [ĤG,K
k ]∗) is the Hamiltonian describ-

ing graphene’s low-energy states around the K (K ′) of the
Brillouin zone. For SLG ĤG,K

k = Ĥ SLG,K , and for BLG
ĤG,K

k = Ĥ BLG,K. Ĥ T I
k is the Hamiltonian describing the

TI’s surface states, and T̂ is the matrix describing spin-
and momentum-conserving tunneling processes between the
graphene layer and the TI’s surface [31], with t being the tun-

FIG. 1. Sketch of (a) a TI-graphene-FM and (b) a magnetically
doped TI-graphene heterostructure. In (a) the random charges are
shown. In (b) the spheres represent the magnetic dopant; the random
charges are not shown explicitly. (c) Atom arrangement for the
commensurate stacking considered. (d) Bands for TI-SLG for # = 0,
δµ = 0. (e) Bands for TI-BLG for # = 20 meV and δµ = 0. (f) Spin
texture on the Fermi surface formed by the bands shown in (d) for
ϵF = 100 meV.

neling strength. The TI’s bulk states are assumed to be gapped.
This condition is realized, for example, in novel ternary or qua-
ternary tetradymites, such as Bi2Te2Se and Bi2−xSbxTe3−ySey ,
for which it has been shown experimentally that the bulk
currents have been completely eliminated [38–45]. For
SLG we have Ĥ SLG,K

k = h̄vgkσ0[cos(φk)τx + sin(φk)τy ] −
µg , where vg ≈ 106 m/s is graphene’s Fermi velocity,
k = |k|, φk = arctan(ky/kx ), σi and τi are the Pauli ma-
trices in spin and sublattice space, respectively, and µg

is the chemical potential. For BLG we have Ĥ BLG,K
k =

h̄2k2/(2m∗)σ0[cos(2φk)τx + sin(2φk)τy ] −µg , where m∗ ≈
0.035me is the electron’s effective mass. For the TI’s surface
states, we have Ĥ T I

k = h̄vT I (kyσx − kxσy ) −µTIσ0, where
vT I ≈ vg/2 and µTI is the chemical potential on the TI’s
surface. In the following the Fermi energy ϵF is measured
from the neutrality point of the SLG (or the BLG), and
δµ ≡ µT I −µg .

In a magnetically doped TI, below the Curie temperature,
the low-energy Hamiltonian for the TI-graphene
quasiparticles, Eq. (1), has an additional term, Hex,
describing the exchange interaction between the quasiparticles
and the magnetization M. Hex = #

∫
(

m̂ · ŝ dr/(, where
# is the strength of the exchange interaction, m̂ ≡ M/|M|,
ŝ ≡ s/|s|, with s being the TI-graphene spin-density operator,
and ( is the two-dimensional (2D) area of the sample. For
a TI-graphene-ferromagnet heterostructure the ferromagnet
(FM) will also cause simply the addition of the term Hex to
the Hamiltonian for the quasiparticles, Eq. (1), as long as
the FM is an insulator and is placed on graphene or bilayer
graphene via mechanical exfoliation, likely with a large twist
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FIG. 3. (a) ⟨τ0(ϵF )⟩ and (b) ⟨τt (ϵF )⟩ for # = 0 meV, δµ = 0 meV,
and nimp = 1012 cm− 2. The solid lines correspond to t = 45 meV,
while dashed lines correspond to the limit t = 0 meV.

v = h̄− 1∂Hk/∂k, and G
R/A
ka = [ϵF − ϵka ± ih̄/2τ0a(k)]− 1 are

the retarded and advanced Green’s functions, respectively, for
electrons with momentum k and band index a.

III. RESULTS

In this section, we present our results for the transport
properties and current-induced spin-density accumulation of
TI-graphene heterostructures.

We define the average τ0 and τt as ⟨τ0(t)(ϵF )⟩ ≡∑
ka τ0a(ta)(k)δ(ϵF − ϵka)/

∑
ka δ(ϵF − ϵka). Figures 3(a) and

3(b) show ⟨τ0(ϵF )⟩ and ⟨τt (ϵF )⟩, respectively, for a TI’s surface,
a TI-SLG heterostructure, and a TI-BLG heterostructure, with
# = 0 meV. We see that the presence of a graphene layer
strongly increases both ⟨τ0(ϵF )⟩ and ⟨τt (ϵF )⟩ and that such
an increase is dramatic for the case when the layer is BLG.
⟨τ0(ϵF )⟩ and ⟨τt (ϵF )⟩ are larger in BLG-TI than TI-SLG
because, especially at low energies, BLG has a larger density of
states than SLG, causing ε(q), which enters in the denominator
in Eq. (2), and therefore ⟨τ0(ϵF )⟩ and ⟨τt (ϵF )⟩ to be larger in
BLG than in SLG. Notice that τ0 and τt increase after adding a
graphene layer even in the limit when t = 0, as shown by the
dashed lines in Fig. 3. This is due to the fact that the graphene
layer screens the dominant source of disorder in the TI even
when t = 0. Changes in # have only minor quantitative effects
as long as # < (t,ϵF ).

Figure 4(a) shows the dependence of χ sx Jy on ϵF for
TI, TI-SLG, and TI-BLG for t = 45 meV, δµ = 0, and
# = 20 meV with out-of-plane magnetization m̂ = ẑ (solid
lines). The dashed lines corresponds to the case # = 0. The
inset shows a sketch of the system, with charge flowing in the y
direction. The direction of the spin accumulation on the top and
bottom layers is indicated by the arrows on the electrons. The
insertion of a graphene layer strongly enhances the current-
induced spin-density response and therefore the SOT. Now, we
consider in-plane magnetization. In this case, the Fermi surface
is not isotropic like for out-of-plane magnetization, which
makes the computation of scattering time, transport time,
and the Edelstein effect more challenging. For concreteness,
we assume the magnetization direction to be m̂ = x̂ (∥).
Figure 4(b) shows χ sx Jy as a function of ϵF for in-plane
m̂ = x̂ (∥) magnetization and # = 20 meV (dashed lines).
The red lines correspond to a TI-BLG-FM, and the black
lines correspond to a TI-FM heterostructure. We obtained an

FIG. 4. (a) χ sx Jy as a function of ϵF for δµ = 0, t = 45 meV, and
# = 20 meV (# = 0) with out-of-plane magnetization m̂ = ẑ (⊥ ),
shown by solid (dashed) lines. Inset: sketch showing the spin-density
accumulation on the top and bottom surfaces of a TI induced by a
current in the y direction. (b) χ sx Jy as a function of ϵF for in-plane
m̂ = x̂ (∥) [out-of-plane m̂ = ẑ (⊥ )] magnetization and # = 20 meV,
shown by dashed (solid) lines. The other parameters are the same as
in (a). (c) Enhancement of χ sx Jy in a TI-BLG system compared to TI
alone as a function of ϵF and δµ for # = 0. (d) χ sx Jy for TI-BLG when
t = 0. In all the panels, the disorder parameters are nimp = 1012 cm− 2

and d = 1 nm.

enhancement as large as the one obtained for out-of-plane
magnetization m̂ = ẑ (⊥ ; solid lines).

We find that changes in δµ have a strong impact on χ sx Jy .
Figure 4(c) shows that by increasing δµ the enhancement of
the SOT can be raised to values as high as 100 in TI-BLG
heterostructures due to the flattening and consequent increase
of the DOS of the TI-like bands (see Appendix A). The results
of Fig. 4 show that in TI-SLG and TI-BLG heterostructures the
current-induced SOT can be expected to be much higher than in
TI surfaces alone. They show that for TI-BLG systems there is
a large range of values of δµ and ϵF for which the enhancement
of χ sx Jy due to the presence of the BLG is consistently close
to 10 or larger [Fig. 4(c)].

We also find that the strong enhancement of χ sx Jy is not
affected significantly by the value of #, as shown in Fig. 5,
where we plot χ sx Jy as a function of # at ϵF = 60 meV.
In Fig. 5(a) we plot χ sx Jy for TI-FM, while Fig. 5(b) shows
the response function χ sx Jy for TI-SLG-FM and TI-SLG-FM
normalized to the response in a TI-FM system.

In addition, in a TI-graphene heterostructure, by placing
the source and drain on the graphene (BLG) and taking into
account the high mobility of graphene (BLG), it is possible to
force most of the current to flow within graphene (BLG) and
the TI’s surface adjacent to it. Therefore, we can minimize the
amount of spin-density accumulation with opposite polariza-
tion that a current flowing in the TI’s bottom surface generates.
This fact should further increase the net SOT.
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(b)(a)

Figure 5. (a) Sketch of a TI-graphene-FM vdW system. (b) 〈τ0(εF )〉
for ∆ = 0, δµ = 0, nimp = 1012 cm−2, and d = 1 nm. The
dashed lines show the results for the limit t = 0, the solid one the
ones for t = 45 meV. Adapted with permission from Phys. Rev. B
96, 235419 (2017).

In a graphene-TI-FM vdW system the dominant source



6

of scattering, at low temperatures, is the presence of charge
impurities [81] close to the surface of the TI [82–86]. In
the absence of screening, the bare scattering potential due to
an isolated charge impurity, in momentum space, is v(q) =
2πe2e−qd/(κq), where d is the average distance of the impu-
rities from the TI’s surface, and κ = (κTI + κ0)/2 is the av-
erage dielectric constant with κTI ≈ 100 [83; 87–89] the di-
electric constant for the TIS and κ0 = 1 the dielectric constant
of vacuum. Accounting for screening, the scattering potential
becomes v(q)/ε(q) where ε(q) is the dielectric function. For
temperatures much lower than the Fermi temperature we can
assume ε(q) ≈ 1 + vc(q)ν(εF ), where vc(q) = 2πe2/(κq)
and ν(εF ) is the density of states at the Fermi energy. Using
this form for the scattering potential we can calculate the life-
time τ0a(k) of a quasiparticle in band a with momentum k, in
the first Born approximation, using

~
τ0a(k)

= 2π
∑
a′q

nimp

∣∣∣∣v(q)

ε(q)

∣∣∣∣2 |〈a′k+q|ak〉|2δ(εa,k−εa′,k+q),

(14)
where nimp is the impurity density, |ak〉 is the Bloch state
with momentum k and band index a, and εa,k is the energy
for a quasiparticle with momentum k in band a. For typical
TI’s samples we have nimp ≈ 1012cm−2 [89]. It is useful to
define an average 〈τ0〉 of τ0 over the bands at the Fermi energy
as 〈τ0(εF )〉 ≡∑ka τ0a(k)δ(εF−εka)/

∑
ka δ(εF−εka). We

allow for an offset between the charge neutrality point of the
SLG (BLG) and the TI surface given by δµ.

Figure 5 (b) shows how 〈τ0(εF )〉 compares for: an isolated
TI surface, a SLG-TI vdW system, and BLG-TI vdW sys-
tem. Solid lines denote the cases when the tunneling between
the SLG/BLG and the TI is finite, while dashed lines denote
the cases with zero interlayer coupling. We see that the pres-
ence of SLG or BLG significantly increases the quasiparti-
cle lifetime, even in the limit when the interlayer tunneling
between the TI and SLG (BLG) is zero. This is due to the
additional screening in the presence of SLG or BLG which
affects the disorder potential created by the charge impuri-
ties [79; 90]. We expect that such an increase in the quasipar-
ticle lifetime will lead to enhancements in some of the spin-
dependent transport phenomena. Similarly, by including the
[1−k·(k+q)] under the sum on the right hand side of Eq. (14)
we can obtain the transport time τta(k), and then, after aver-
aging over the bands at the Fermi energy, the corresponding
average 〈τt〉. Figure 6 (a) shows 〈τt〉 as a function of εF for
an isolated TI surface together with results for, both, TI-SLG,
and TI-BLG vdW systems. We see that the presence of SLG
or BLG increases the transport time, a consequence of the ad-
ditional screening due to the graphenic layer. Moreover, we
note that this enhancement is particularly significant for the
case of TI-BLG.

Using linear-response theory in the long-wavelength
regime, the d.c. longitudinal conductivity is given by

σii ≈ e2

2πΩ
Re
∑
k,a

viaa(k)ṽiaa(k)GAkaG
R
ka . (15)

where Ω is the area of the BZ, viaa(k) ≡ 〈ak|vi|ak〉 is the

expectation value of the i-th component of the velocity op-
erator v = ~−1∂Hk/∂k, ṽiaa(k) = (τa/τ0a)kv

i
aa(k) is the

disorder-renormalized velocity (at the ladder approximation
level), and GR/Aka = (εF − εka ± i~/2τ0a(k))−1 is the re-
tarded/advanced Green’s function, for electrons with momen-
tum k and band index a. The increase of τt due to the presence
of SLG or BLG is also reflected in an increase of the d.c. con-
ductivity, as can be seen in Fig. 6 (b). We note that for finite
values of the spin-splitting, ∆, the results for τ0, τt, and σii
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FIG. 3. (a) ⟨τ0(ϵF )⟩ and (b) ⟨τt (ϵF )⟩ for # = 0 meV, δµ = 0 meV,
and nimp = 1012 cm− 2. The solid lines correspond to t = 45 meV,
while dashed lines correspond to the limit t = 0 meV.

v = h̄− 1∂Hk/∂k, and G
R/A
ka = [ϵF − ϵka ± ih̄/2τ0a(k)]− 1 are

the retarded and advanced Green’s functions, respectively, for
electrons with momentum k and band index a.

III. RESULTS

In this section, we present our results for the transport
properties and current-induced spin-density accumulation of
TI-graphene heterostructures.

We define the average τ0 and τt as ⟨τ0(t)(ϵF )⟩ ≡∑
ka τ0a(ta)(k)δ(ϵF − ϵka)/

∑
ka δ(ϵF − ϵka). Figures 3(a) and

3(b) show ⟨τ0(ϵF )⟩ and ⟨τt (ϵF )⟩, respectively, for a TI’s surface,
a TI-SLG heterostructure, and a TI-BLG heterostructure, with
# = 0 meV. We see that the presence of a graphene layer
strongly increases both ⟨τ0(ϵF )⟩ and ⟨τt (ϵF )⟩ and that such
an increase is dramatic for the case when the layer is BLG.
⟨τ0(ϵF )⟩ and ⟨τt (ϵF )⟩ are larger in BLG-TI than TI-SLG
because, especially at low energies, BLG has a larger density of
states than SLG, causing ε(q), which enters in the denominator
in Eq. (2), and therefore ⟨τ0(ϵF )⟩ and ⟨τt (ϵF )⟩ to be larger in
BLG than in SLG. Notice that τ0 and τt increase after adding a
graphene layer even in the limit when t = 0, as shown by the
dashed lines in Fig. 3. This is due to the fact that the graphene
layer screens the dominant source of disorder in the TI even
when t = 0. Changes in # have only minor quantitative effects
as long as # < (t,ϵF ).

Figure 4(a) shows the dependence of χ sx Jy on ϵF for
TI, TI-SLG, and TI-BLG for t = 45 meV, δµ = 0, and
# = 20 meV with out-of-plane magnetization m̂ = ẑ (solid
lines). The dashed lines corresponds to the case # = 0. The
inset shows a sketch of the system, with charge flowing in the y
direction. The direction of the spin accumulation on the top and
bottom layers is indicated by the arrows on the electrons. The
insertion of a graphene layer strongly enhances the current-
induced spin-density response and therefore the SOT. Now, we
consider in-plane magnetization. In this case, the Fermi surface
is not isotropic like for out-of-plane magnetization, which
makes the computation of scattering time, transport time,
and the Edelstein effect more challenging. For concreteness,
we assume the magnetization direction to be m̂ = x̂ (∥).
Figure 4(b) shows χ sx Jy as a function of ϵF for in-plane
m̂ = x̂ (∥) magnetization and # = 20 meV (dashed lines).
The red lines correspond to a TI-BLG-FM, and the black
lines correspond to a TI-FM heterostructure. We obtained an

FIG. 4. (a) χ sx Jy as a function of ϵF for δµ = 0, t = 45 meV, and
# = 20 meV (# = 0) with out-of-plane magnetization m̂ = ẑ (⊥ ),
shown by solid (dashed) lines. Inset: sketch showing the spin-density
accumulation on the top and bottom surfaces of a TI induced by a
current in the y direction. (b) χ sx Jy as a function of ϵF for in-plane
m̂ = x̂ (∥) [out-of-plane m̂ = ẑ (⊥ )] magnetization and # = 20 meV,
shown by dashed (solid) lines. The other parameters are the same as
in (a). (c) Enhancement of χ sx Jy in a TI-BLG system compared to TI
alone as a function of ϵF and δµ for # = 0. (d) χ sx Jy for TI-BLG when
t = 0. In all the panels, the disorder parameters are nimp = 1012 cm− 2

and d = 1 nm.

enhancement as large as the one obtained for out-of-plane
magnetization m̂ = ẑ (⊥ ; solid lines).

We find that changes in δµ have a strong impact on χ sx Jy .
Figure 4(c) shows that by increasing δµ the enhancement of
the SOT can be raised to values as high as 100 in TI-BLG
heterostructures due to the flattening and consequent increase
of the DOS of the TI-like bands (see Appendix A). The results
of Fig. 4 show that in TI-SLG and TI-BLG heterostructures the
current-induced SOT can be expected to be much higher than in
TI surfaces alone. They show that for TI-BLG systems there is
a large range of values of δµ and ϵF for which the enhancement
of χ sx Jy due to the presence of the BLG is consistently close
to 10 or larger [Fig. 4(c)].

We also find that the strong enhancement of χ sx Jy is not
affected significantly by the value of #, as shown in Fig. 5,
where we plot χ sx Jy as a function of # at ϵF = 60 meV.
In Fig. 5(a) we plot χ sx Jy for TI-FM, while Fig. 5(b) shows
the response function χ sx Jy for TI-SLG-FM and TI-SLG-FM
normalized to the response in a TI-FM system.

In addition, in a TI-graphene heterostructure, by placing
the source and drain on the graphene (BLG) and taking into
account the high mobility of graphene (BLG), it is possible to
force most of the current to flow within graphene (BLG) and
the TI’s surface adjacent to it. Therefore, we can minimize the
amount of spin-density accumulation with opposite polariza-
tion that a current flowing in the TI’s bottom surface generates.
This fact should further increase the net SOT.
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FIG. 5. (a) χ sx Jy as a function of the exchange interaction " for a
TI-FM heterostructure at ϵF = 60 meV. (b) Ratio χ sx Jy /χ

sx Jy

T I of the
TI-BLG-FM (red circles) and TI-SLG-FM (blue squares) responses
to the TI-FM response. The magnetization direction is out of plane,
m̂ = ẑ (⊥).

The large enhancement of the spin-density accumulation
in TI-graphene systems is due to two main reasons: (i) the
survival, after hybridization, of TI-like bands well separated
from Rashba bands and (ii) the strong enhancement of the
relaxation time τ0 and transport time τt due to the additional
screening by the graphene layer of the dominant source of
disorder. It is important to notice that the presence of the
Rashba bands (see Fig. 1) not only is not essential for the
enhancement of the spin-density accumulation but can be
detrimental given that the Rashba bands give χ sxJy with a sign
opposite that of the TI-like bands. This fact can be seen at large
Fermi energies for BLG-TI in Fig. 4(a): for ϵF ! 140 meV the
Fermi surface intersects the Rashba bands, which by giving a
contribution to χ sxJy opposite to that of the TI-like bands makes
the net SOT of TI-BLG slightly lower than the SOT of TI alone.
Point (ii) explains the fact χ sxJy , at low energies, is always
larger in TI-BLG than in TI-SLG given that τ0 and τt are larger
in TI-BLG than in TI-SLG. In addition, it explains the fact that
even in the limit where there is no hybridization between the
TI and the graphene bands, i.e., t = 0 due, for example, to a
large twist angle (see Appendix B), the spin-current correlation
function in TI-graphene systems is still larger than in TIs alone
for the experimentally relevant case where charge impurities
are the dominant source of disorder, as shown in Fig. 4(d).
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FIG. 6. (a) χ sx Jy /χ
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T I as a function of the tunneling amplitude t

for TI-SLG and TI-BLG heterostructures at ϵF = 60 meV and δµ =
0. (b) χ sx Jy as a function of the effective distance to the impurities
d for TI-SLG and TI-BLG heterostructures at ϵF = 60 meV and
δµ = 0.
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FIG. 7. σ yy(ϵF ) for TI (dashed line), TI-SLG (dotted line), and
TI-BLG (solid line) for (a) " = 0 and (b) " = 20 meV with out-of-
plane magnetization, m̂ = ẑ (⊥). t = 45 meV, δµ = 0, and nimp =
1012 cm−2.

In Fig. 6(a), we show the current-induced spin-density
accumulation response function dependence on the tunneling
amplitude t , normalized to the TI response. As t is increased,
TI and graphene hybridize more strongly, leading to a larger
SOT. However, even at vanishing tunneling, an enhancement
is still present.

In Fig. 6(b), we plot χ sxJy as a function of the effective
distance from the TI surface to the effective layer of impurities
d. The farther away the impurities are located, the weaker the
disorder is, and therefore, the larger the expected SOT is.

To estimate the efficiency of the current-induced SOT in
TI-graphene heterostructures, we calculate the associated dc
longitudinal conductivity σ ii for the same parameters. In the
linear-response, long-wavelength regime we have

σ ii ≈ e2

2π(
Re

∑

k,a

vi
aa(k)ṽi

aa(k)GA
kaG

R
ka. (4)

Figure 7(a) shows σ yy for TI, TI-SLG, and TI-BLG as a
function of ϵF in the limit " = 0. We see that the presence
of a graphene layer enhances the conductivity of the system
by an order of magnitude or more. Figure 7(b) shows that the
exchange term Hex does not affect σ yy significantly. The results
shown in Fig. 7(b) imply that in TI-graphene heterostructures
not only can the current-induced SOT be much larger than
in TIs alone but also the generation of the SOT is much
less dissipative. For example, for an applied electric field of
the order of 0.1 V/µm, we can reach a conservative spin-
density accumulation δsx ≈ 5 × 107h̄ cm−2. For a typical
carrier density in graphene (n ≈ 1011cm−2), we have δsx/n =
5 × 10−4h̄.

IV. CONCLUSIONS

In conclusion, we have shown that in magnetic TI-graphene
heterostructures the nonequilibrium uniform spin-density ac-
cumulation induced by a charge current can be 10–100 times
higher than in TIs alone, giving rise to a giant Edelstein effect.
The reasons for these enhancements are (i) the additional
screening by the graphene layer of the dominant source of
disorder, (ii) the fact that graphene and the TI’s surface are
almost commensurate, making a strong hybridization of the
TI’s and graphene’s states possible, (iii) the fact that the spin
structure of the hybridized bands has a spin structure very
similar to the one of the original TI’s band for a large range
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Figure 6. (a) 〈τt(εF )〉 for ∆ = 0, δµ = 0, and nimp = 1012

cm−2. The dashed lines show the results for the limit t = 0, the
solid one the ones for t = 45 meV. (b) σyy(εF ), for TI (dashed line),
TI-SLG (dotted line), and TI-BLG (solid line) for ∆ = 0, δµ = 0,
nimp = 1012 cm−2, d = 1 nm, and t = 45 meV, and Adapted with
permission from Phys. Rev. B 96, 235419 (2017).

Having established the basic charge transport properties we
now briefly discuss spin-dependent transport. A signature ef-
fect of the coupling between charge and spin transport that
can take place in systems with spin-orbit coupling is the in-
verse Edelstein effect [91; 92]. In this effect a charge current
causes a spin accumulation transverse to the direction of the
current. In the long wavelength, dc, limit, of the linear re-
sponse regime, such an effect is encoded by the spin-current
response function:

χsxJy ≈ e

2πΩ
Re
∑
k,a

sxaa(k)ṽyaa(k)GAkaG
R
ka , (16)

where siaa(k) ≡ 〈ak|si|ak〉 is the expectation value of the
i-th component of the spin density operator.

Figure 7 (a) displays a significant enhancement of the spin-
current response χsxJy in SLG-TI (BLG-TI) vdW system,
compared to an isolated TI’s surface. This enhancement is due
to the presence of the graphenic layer and occurs for, both, the
case of finite (solid lines) and zero ∆ (dashed lines). As the
sketch in the inset shows, a current in the y-direction causes a
spin accumulation in the transverse direction x. An increase
of δµ can significantly enhance the spin-current response, as
shown in Fig. 7 (b), whereas ∆ has a small effect [80].

The fact that the Edelstein effect can be much stronger in
vdW systems like TI-SLG and TI-BLG effects than in isolated
TIs [93–98] is due to the fact that the bands for the vdW sys-
tem retain a strong SOC, even after the hybridization of the
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FIG. 3. (a) ⟨τ0(ϵF )⟩ and (b) ⟨τt (ϵF )⟩ for # = 0 meV, δµ = 0 meV,
and nimp = 1012 cm− 2. The solid lines correspond to t = 45 meV,
while dashed lines correspond to the limit t = 0 meV.

v = h̄− 1∂Hk/∂k, and G
R/A
ka = [ϵF − ϵka ± ih̄/2τ0a(k)]− 1 are

the retarded and advanced Green’s functions, respectively, for
electrons with momentum k and band index a.

III. RESULTS

In this section, we present our results for the transport
properties and current-induced spin-density accumulation of
TI-graphene heterostructures.

We define the average τ0 and τt as ⟨τ0(t)(ϵF )⟩ ≡∑
ka τ0a(ta)(k)δ(ϵF − ϵka)/

∑
ka δ(ϵF − ϵka). Figures 3(a) and

3(b) show ⟨τ0(ϵF )⟩ and ⟨τt (ϵF )⟩, respectively, for a TI’s surface,
a TI-SLG heterostructure, and a TI-BLG heterostructure, with
# = 0 meV. We see that the presence of a graphene layer
strongly increases both ⟨τ0(ϵF )⟩ and ⟨τt (ϵF )⟩ and that such
an increase is dramatic for the case when the layer is BLG.
⟨τ0(ϵF )⟩ and ⟨τt (ϵF )⟩ are larger in BLG-TI than TI-SLG
because, especially at low energies, BLG has a larger density of
states than SLG, causing ε(q), which enters in the denominator
in Eq. (2), and therefore ⟨τ0(ϵF )⟩ and ⟨τt (ϵF )⟩ to be larger in
BLG than in SLG. Notice that τ0 and τt increase after adding a
graphene layer even in the limit when t = 0, as shown by the
dashed lines in Fig. 3. This is due to the fact that the graphene
layer screens the dominant source of disorder in the TI even
when t = 0. Changes in # have only minor quantitative effects
as long as # < (t,ϵF ).

Figure 4(a) shows the dependence of χ sx Jy on ϵF for
TI, TI-SLG, and TI-BLG for t = 45 meV, δµ = 0, and
# = 20 meV with out-of-plane magnetization m̂ = ẑ (solid
lines). The dashed lines corresponds to the case # = 0. The
inset shows a sketch of the system, with charge flowing in the y
direction. The direction of the spin accumulation on the top and
bottom layers is indicated by the arrows on the electrons. The
insertion of a graphene layer strongly enhances the current-
induced spin-density response and therefore the SOT. Now, we
consider in-plane magnetization. In this case, the Fermi surface
is not isotropic like for out-of-plane magnetization, which
makes the computation of scattering time, transport time,
and the Edelstein effect more challenging. For concreteness,
we assume the magnetization direction to be m̂ = x̂ (∥).
Figure 4(b) shows χ sx Jy as a function of ϵF for in-plane
m̂ = x̂ (∥) magnetization and # = 20 meV (dashed lines).
The red lines correspond to a TI-BLG-FM, and the black
lines correspond to a TI-FM heterostructure. We obtained an

FIG. 4. (a) χ sx Jy as a function of ϵF for δµ = 0, t = 45 meV, and
# = 20 meV (# = 0) with out-of-plane magnetization m̂ = ẑ (⊥ ),
shown by solid (dashed) lines. Inset: sketch showing the spin-density
accumulation on the top and bottom surfaces of a TI induced by a
current in the y direction. (b) χ sx Jy as a function of ϵF for in-plane
m̂ = x̂ (∥) [out-of-plane m̂ = ẑ (⊥ )] magnetization and # = 20 meV,
shown by dashed (solid) lines. The other parameters are the same as
in (a). (c) Enhancement of χ sx Jy in a TI-BLG system compared to TI
alone as a function of ϵF and δµ for # = 0. (d) χ sx Jy for TI-BLG when
t = 0. In all the panels, the disorder parameters are nimp = 1012 cm− 2

and d = 1 nm.

enhancement as large as the one obtained for out-of-plane
magnetization m̂ = ẑ (⊥ ; solid lines).

We find that changes in δµ have a strong impact on χ sx Jy .
Figure 4(c) shows that by increasing δµ the enhancement of
the SOT can be raised to values as high as 100 in TI-BLG
heterostructures due to the flattening and consequent increase
of the DOS of the TI-like bands (see Appendix A). The results
of Fig. 4 show that in TI-SLG and TI-BLG heterostructures the
current-induced SOT can be expected to be much higher than in
TI surfaces alone. They show that for TI-BLG systems there is
a large range of values of δµ and ϵF for which the enhancement
of χ sx Jy due to the presence of the BLG is consistently close
to 10 or larger [Fig. 4(c)].

We also find that the strong enhancement of χ sx Jy is not
affected significantly by the value of #, as shown in Fig. 5,
where we plot χ sx Jy as a function of # at ϵF = 60 meV.
In Fig. 5(a) we plot χ sx Jy for TI-FM, while Fig. 5(b) shows
the response function χ sx Jy for TI-SLG-FM and TI-SLG-FM
normalized to the response in a TI-FM system.

In addition, in a TI-graphene heterostructure, by placing
the source and drain on the graphene (BLG) and taking into
account the high mobility of graphene (BLG), it is possible to
force most of the current to flow within graphene (BLG) and
the TI’s surface adjacent to it. Therefore, we can minimize the
amount of spin-density accumulation with opposite polariza-
tion that a current flowing in the TI’s bottom surface generates.
This fact should further increase the net SOT.
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FIG. 3. (a) ⟨τ0(ϵF )⟩ and (b) ⟨τt (ϵF )⟩ for # = 0 meV, δµ = 0 meV,
and nimp = 1012 cm− 2. The solid lines correspond to t = 45 meV,
while dashed lines correspond to the limit t = 0 meV.

v = h̄− 1∂Hk/∂k, and G
R/A
ka = [ϵF − ϵka ± ih̄/2τ0a(k)]− 1 are

the retarded and advanced Green’s functions, respectively, for
electrons with momentum k and band index a.

III. RESULTS

In this section, we present our results for the transport
properties and current-induced spin-density accumulation of
TI-graphene heterostructures.

We define the average τ0 and τt as ⟨τ0(t)(ϵF )⟩ ≡∑
ka τ0a(ta)(k)δ(ϵF − ϵka)/

∑
ka δ(ϵF − ϵka). Figures 3(a) and

3(b) show ⟨τ0(ϵF )⟩ and ⟨τt (ϵF )⟩, respectively, for a TI’s surface,
a TI-SLG heterostructure, and a TI-BLG heterostructure, with
# = 0 meV. We see that the presence of a graphene layer
strongly increases both ⟨τ0(ϵF )⟩ and ⟨τt (ϵF )⟩ and that such
an increase is dramatic for the case when the layer is BLG.
⟨τ0(ϵF )⟩ and ⟨τt (ϵF )⟩ are larger in BLG-TI than TI-SLG
because, especially at low energies, BLG has a larger density of
states than SLG, causing ε(q), which enters in the denominator
in Eq. (2), and therefore ⟨τ0(ϵF )⟩ and ⟨τt (ϵF )⟩ to be larger in
BLG than in SLG. Notice that τ0 and τt increase after adding a
graphene layer even in the limit when t = 0, as shown by the
dashed lines in Fig. 3. This is due to the fact that the graphene
layer screens the dominant source of disorder in the TI even
when t = 0. Changes in # have only minor quantitative effects
as long as # < (t,ϵF ).

Figure 4(a) shows the dependence of χ sx Jy on ϵF for
TI, TI-SLG, and TI-BLG for t = 45 meV, δµ = 0, and
# = 20 meV with out-of-plane magnetization m̂ = ẑ (solid
lines). The dashed lines corresponds to the case # = 0. The
inset shows a sketch of the system, with charge flowing in the y
direction. The direction of the spin accumulation on the top and
bottom layers is indicated by the arrows on the electrons. The
insertion of a graphene layer strongly enhances the current-
induced spin-density response and therefore the SOT. Now, we
consider in-plane magnetization. In this case, the Fermi surface
is not isotropic like for out-of-plane magnetization, which
makes the computation of scattering time, transport time,
and the Edelstein effect more challenging. For concreteness,
we assume the magnetization direction to be m̂ = x̂ (∥).
Figure 4(b) shows χ sx Jy as a function of ϵF for in-plane
m̂ = x̂ (∥) magnetization and # = 20 meV (dashed lines).
The red lines correspond to a TI-BLG-FM, and the black
lines correspond to a TI-FM heterostructure. We obtained an

FIG. 4. (a) χ sx Jy as a function of ϵF for δµ = 0, t = 45 meV, and
# = 20 meV (# = 0) with out-of-plane magnetization m̂ = ẑ (⊥ ),
shown by solid (dashed) lines. Inset: sketch showing the spin-density
accumulation on the top and bottom surfaces of a TI induced by a
current in the y direction. (b) χ sx Jy as a function of ϵF for in-plane
m̂ = x̂ (∥) [out-of-plane m̂ = ẑ (⊥ )] magnetization and # = 20 meV,
shown by dashed (solid) lines. The other parameters are the same as
in (a). (c) Enhancement of χ sx Jy in a TI-BLG system compared to TI
alone as a function of ϵF and δµ for # = 0. (d) χ sx Jy for TI-BLG when
t = 0. In all the panels, the disorder parameters are nimp = 1012 cm− 2

and d = 1 nm.

enhancement as large as the one obtained for out-of-plane
magnetization m̂ = ẑ (⊥ ; solid lines).

We find that changes in δµ have a strong impact on χ sx Jy .
Figure 4(c) shows that by increasing δµ the enhancement of
the SOT can be raised to values as high as 100 in TI-BLG
heterostructures due to the flattening and consequent increase
of the DOS of the TI-like bands (see Appendix A). The results
of Fig. 4 show that in TI-SLG and TI-BLG heterostructures the
current-induced SOT can be expected to be much higher than in
TI surfaces alone. They show that for TI-BLG systems there is
a large range of values of δµ and ϵF for which the enhancement
of χ sx Jy due to the presence of the BLG is consistently close
to 10 or larger [Fig. 4(c)].

We also find that the strong enhancement of χ sx Jy is not
affected significantly by the value of #, as shown in Fig. 5,
where we plot χ sx Jy as a function of # at ϵF = 60 meV.
In Fig. 5(a) we plot χ sx Jy for TI-FM, while Fig. 5(b) shows
the response function χ sx Jy for TI-SLG-FM and TI-SLG-FM
normalized to the response in a TI-FM system.

In addition, in a TI-graphene heterostructure, by placing
the source and drain on the graphene (BLG) and taking into
account the high mobility of graphene (BLG), it is possible to
force most of the current to flow within graphene (BLG) and
the TI’s surface adjacent to it. Therefore, we can minimize the
amount of spin-density accumulation with opposite polariza-
tion that a current flowing in the TI’s bottom surface generates.
This fact should further increase the net SOT.
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Figure 7. (a) χsxJy as a function of εF for δµ = 0 and ∆ = 20 meV
(∆ = 0), solid (dashed) lines. Inset: sketch showing the spin density
accumulation on the top and bottom surface of the TI induced by a
current in the y direction. (c) Enhancement of χsxJy in a TI-BLG
system compared to TI alone as a function of εF and δµ for ∆ = 0.
For both the panels nimp = 1012 cm−2, d = 1 nm. Adapted with
permission from Phys. Rev. B 96, 235419 (2017).

states in the TI and the graphenic layer, and the fact that the
quasiparticle relaxation time can be greatly increased when
the dominant source of scattering is charge impurities, thanks
to the additional screening provided by the graphenic layer.
As mentioned above, the enhancement of the lifetime gained
from the additional screening makes it possible for vdW sys-
tems like TI-BLG to have quite stronger spin-charge coupled
transport than isolated systems like TIs even when the tunnel-
ing between the two layers of the vdW system is negligible. In
this section we focused on the case in which the interlayer tun-
neling is constant; however, it is interesting to note that spin
and charge transport are still coupled in such vdW systems
even in the limit when the interlayer tunneling is predomi-
nantly random, i.e. the diffusive limit [99].

IV. GRAPHENE-TMD HETEROSTRUCTURES

In recent years, much progress has been made on the char-
acterization of the electronic properties of graphene-TMD het-
erostructures, both theoretically and experimentally. A mono-
layer TMD can be either metallic, such as NbSe2, or a direct
gap semiconductor such as MoS2, and WSe2. At low tem-
peratures NbSe2 becomes superconducting and so we defer
discussion of graphene-NbSe2 vdW systems to the following
section, see in particular Sec. V B. In this section we briefly
summarize the main results for graphene-TMD heterostruc-
tures in which the TMD is a semiconductor.

The structure of a TMD monolayer is shown schematically
in Fig. 8 (a) where the purple spheres represent the metallic
atoms, such as Mo in MoS2, and the green spheres the chalco-
gen atoms, S in MoS2. One of the main features of TMDs is
the presence of strong SOC, which, in monolayers, induces a
sizeable spin splitting of the hole bands [100–104] located at
the corners of the BZ, as shown in Fig. 8 (b). At low energies,
the bands of a TMD semiconductor monolayer such as MoS2,

superconductor with a d vector that is not perpendicular to
the even component of h, hþ. Notice that because h and d
belong to different layers they are not constrained to be in
any specific relation. Equation (8) also shows that an odd-
frequency triplet term is present if both hþ and the singlet
pairing in the substrate sSC are not 0, as shown previously
[9,32,33]. Equation (8) therefore shows that when hþ ≠ 0,
and h− ¼ 0, by the proximity effect, we have odd-
frequency superconductivity in the 2DEG that has the
“opposite” spin structure from the superconductivity in the
substrate: triplet if the substrate is a singlet superconductor,
singlet if the substrate is a triplet superconductor (with d
not orthogonal to hþ). A very interesting and novel result is
that even when hþ ¼ 0, i.e., no ferromagnetism is present
in the 2DEG, we can have odd-frequency superconductiv-
ity in the 2DEG, without having to assume the presence of a
spin-active interface, if the 2DEG has spin-orbit coupling,
so that h− ≠ 0, and the substrate is a triplet superconductor
with d not parallel to h− (again, we emphasize that because
h− and d belong to different layers they are not locked to
each other). This is a result that significantly enlarges the
set of engineered structures in which to look for odd-
frequency superconductivity by adding a whole new class
of heterostructures. As we show below, a system that falls
into this class is a heterostructure formed by a group-VI
dichalcogenide monolayer and a superconductor’s surface
with Rashba spin-orbit coupling.
TMDs, such as MoS2, have recently received a lot of

attention due to their unusual electronic properties and
potential for applications in electronics. MoS2 can be
exfoliated down to monolayer 2D crystals [4,42–44].
These monolayers have been shown to possess a direct band
gap of 1.8 eV [4,45]; they can be gated [4], and have
exhibited electron mobilities as high as 200 cm2V−1 s−1 [4].
Furthermore, the d-electron states exhibit a valley degree of
freedom that is coupled to the electron spin [46–48]. In the
context of our problem, this material is of great interest not
only because it is a two-dimensional material that is readily
available, easily manufactured, and incorporated into heter-
ostructures, but also because of its strong spin-orbit coupling.
Consider the heterostructure shown in Fig. 1 composed

of a TMD monolayer on top of a superconductor. The
low-energy electronic states of a TMD monolayer
are well described by the following valley-dependent
Hamiltonian [46]:

ĤTMD
k;λ ¼

!
aγðλkxτ1 þ kyτ2Þ þ

u
2
τ3 − μτ0

"
⊗ σ0

−
λα
2
ðτ3 − τ0Þ ⊗ σ3; ð9Þ

where τi are Pauli matrices acting on the orbital space of the
TMD monolayer, a is the lattice constant, γ is the effective
hopping integral, u is the energy gap between the valence
and conduction bands, α is the strength of the spin-orbit

coupling, λ ¼ %1 is the valley index (λ ¼ 1 denotes the K
valley and λ ¼ −1 denotes the K0 valley; see Fig. 1), k ¼
ðkx; ky; 0Þ is a vector describing small deviations from the
K or K0 point in k space, and μ is the chemical potential.
For MoS2, a¼ 3.193 Å, γ ¼ 1.10 eV, u ¼ 1.66 eV, and
2α ¼ 0.15 eV [46].
The Hamiltonian in Eq. (9) possesses four eigenstates at

the K and K0 points, as shown in Fig. 1: two spin-
degenerate conduction states separated by an eV-scale
gap from two spin-polarized valence states. For our
analysis the most interesting case is when MoS2 is hole
doped. For this reason in the following we use an effective
two-band model in which we include only the valence
bands. Considering the large gap between the valence and
conduction bands this does not introduce any inaccuracy.
For small k the valence band Hamiltonian can be written in
spin space as

ĤTMD
k;λ ¼ −

#
a2γ2

u
k2 þ u

2
þ μ

$
σ0 þ λασ3: ð10Þ

Notice that, taking into account the valley index λ, for
the parity operator, P, acting on a function, fðk; λÞ, we
have Pfðk; λÞ ¼ fð−k;−λÞ. Using the notation used in
Eqs. (7) and (8) we then find that in this case
h0ðkÞ ¼ −f½ða2γ2=uÞk2' þ ½ðu=2Þ þ μ'g, hþðk; λÞ ¼ 0,
and h−ðk; λÞ ¼ 2λαẑ, where ẑ is the unit vector normal
to the TMD monolayer. Starting from the general Eqs. (7)
and (8) we then find

FIG. 1. (a) Unit cell for a monolayer transition metal dichalco-
genide (TMD). A single monolayer is composed of three
covalently bonded layers trigonally coordinated with a layer of
transition metal sandwiched between two layers of chalcogen.
(b) Schematic of a heterostructure formed by exfoliating a TMD
monolayer onto a superconductor. (c) Sketch of the band
structure of a TMD monolayer with the d-electron bands
appearing at the K and K0 points with a band gap of 1.8 eV
separating a pair of spin-degenerate conduction bands from a pair
of spin-polarized bands. Notice that the polarization is different in
the two inequivalent valleys (K and K0).
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minimum kinetic energy cutoff for planewave expansion was
set to 50 Ry. The integration of the total energy was per-
formed within the first Brillouin zone on the uniform k-points
Monkhorst-Pack mesh40 with sizes (10 ⇥ 1 ⇥ 1) for AGNR-
MoSe2, (16 ⇥ 1 ⇥ 1) for AGNR-NbSe2, (20 ⇥ 1 ⇥ 1) for
ZGNR-MoSe2, and (10 ⇥ 2 ⇥ 1) for ZGNR-NbSe2 to verify
the convergence of the results.

For each structure, the energy bandstructure was obtained
with and without relativistic corrections to identify the effect
of spin orbit coupling on the electronic structure of the GNR-
TMD system.

To keep the presentation self-contained in Fig. 1 we show
the band structure for the TMD’s monolayers that we consider
in the remainder as substrates for GNRs: MoS2 in Fig. 1 (b),
MoSe2 in Fig. 1 (c) and NbSe2 in Fig. 1 (d). MoSe2 has a
direct band gap equal to 1.33 eV whereas NbSe2 is metal-
lic. The key feature of TMDs monolayers is the presence of a
strong spin-orbit-induced spin splitting around the K-point of
the Brillouin Zone (BZ). For a monolayer TMD the strength
of the SOC can be quantified by the spin splitting at the K
point of conduction or valence band, whichever is largest.
For MoSe2 the conduction band has a spin splitting equal to
188.8 meV, for the NbSe2 the conduction band has the largest
spin splitting, equal to 156 meV, at the K point. Table I sum-
marizes the key properties of the TMDs that we consider

System aS(Å) u(Å) Note Gap(eV) 4v
"#(meV) 4c

"#(meV)
MoSe2 3.33 1.674 PBE 1.33 189 21
NbSe2 3.48 1.679 PBE - 155 -

TABLE I: Table shows the structural parameter values of the TMD
substrates used in this work. Lattice constant of single layer TMD is
given by (aS). The closest distance between transition atom plane
and dichalcogenide atom plane is denoted by u. 4v/c

"# are the max-
imum spin splitting energy at valley K for valence and conduction
band.

Graphene nanoribbons are of two types depending on the
type of edges: armchair nanoribbons shown in Fig. 2 (a),
and zigzag ribbons shown in Fig. 2 (b). In these figures we
also show the corresponding lattice constants aAGNR =

p
3aG,

aZGNR =aG, for an AGNR and a ZGNR, respectively, where
aG = 2.46Å is the graphene lattice constant. Fig 2 (c) and
(d) show the typical electronic structure obtained via ab-initio
calculations for an AGNR and a ZGNR respectively. In all our
calculations, to avoid the effect of dangling bonds, we termi-
nate the edges of the GNRs with hydrogen atoms, shown as
small grey sphere in Fig. 2. The band structure of both types
of GNRs has a direct gap. In ZGNRs the gap at k = ⇡ is
due to electron-electron interactions that favor a ground state
in which the electrons are ferromagnetically polarized along
the edges and antiferromagnetically between the edges41–47.
AGNRs can be classified in three distinct groups depending
on their chirality48. Let N be the width, in terms of carbon-
carbon dimers aligned along the longitudinal direction, of an
AGNR. The three ANGRs’ chirality classes correspond to rib-
bons with width N = 3n � 1, N = 3n, N = 3n + 1
n 2 N. DFT results42,49,50 show that, contrary to the pre-
diction of simple tight-binding models with constant hopping

FIG. 1: (Color online). (a) Typical structure of a TMD monolayer.
Band structure of MoS2, (b), MoSe2 (c), and NbSe2 (d).

between the pz orbitals, all three types of AGNRs have a direct
band gap at k = 0, but this gap is much smaller for the class
with N = 3n � 1. For this in the remainder for AGNR-TMD
heterostructures we focus on the case when N = 3n� 1 = 5.

The GNR-TMD heterostructure is characterized by a one
dimensional primitive cell that depend on the stacking orien-
tation of the GNR with respect to the TMD. Let ✓ be the rela-
tive angle between the substrate and the ribbon. The condition
for a commensurate structure can be expressed as:

mare
i✓ = as[pei⇡/6 + qe�i⇡/6] (1)

where ar is the ribbon lattice constant, as is the TMD lat-
tice constant and (m, p, q) are positive integers. Equation (1)
implies that the integers (m, p, q) mus satisfy the following
equation:

a2
rm

2 = a2
s(p

2 + q2 + pq). (2)

We use equations (1), (2) to identify possible commensurate
structures with the constrains that the uniform strain on GNR
be less than 5%. The primitive vector ah of the GNR-TMD
heterostructure is then given by ah = mar[cos ✓̂x + sin ✓̂y]

Figure 3 shows schematically the orientation in momentum
space of the GNR’s and TMD’s Brillouin zones for a generic
relative ✓. The 2D BZ of the TMD is folded to the 1D BZ of
the heterostructure. We can see that for same values of ✓, for
example ✓ = 0 the opposite valleys K and K 0 of the TMD BZ
fold on the same point of the heterostructure reduced BZ, its �
point. For other values of ✓, for example ✓ = ⇡/2, equivalent
valleys K (and K 0) fold on the same point of the heterostruc-
ture reduced BZ, Fig. 3. Considering that the spin splitting at
the valley K and K 0 are equal and opposite, due to time rever-
sal symmetry, we can expect the effect of spin-orbit coupling

(a) (b)

Figure 8. (a) Sketch of the typical lattice of a transition metal
dichalcogenide monolayer, with purple spheres representing the
metallic atoms and green spheres the chalcogen atoms. (b) Schematic
of the first Brillouin zone of MoS2 with the low energy bands at the
K and K′ points. Spin-polarization of the valence bands denoted
with arrows. Adapted with permission from Phys. Rev. Lett. 116,
257001 (2016).

are well described by the following Hamiltonian [105]:

ĥTMD
k =aγ (λkxκ̂1 + kyκ̂2) +

u

2
κ̂3 − µκ̂0

− λα

2
(κ̂3 − κ̂0)⊗ σ̂3, (17)

where a is the in-plane lattice constant, γ the in-plane hopping
amplitude, λ = ±1 is the index denoting the valley (K or K′),
kx ky are the in-plane components of the electrons wave vec-
tor, measured from the corner of the BZ, κ̂i are 2 Pauli matri-
ces in the orbital space [100], u is the band-gap, µ the chemi-
cal potential and 2α is the spin-splitting of the valence bands
at the K (K′) point due to the presence of spin-orbit cou-
pling. In the case of MoS2 these parameters are a = 3.193 Å,
γ ≈ 1.1 eV, u ≈ 1.65 eV, and 2α ≈ 0.15 eV [100].

Given that the semiconducting monolayer TMDs have a
fairly large gap, ∼ 2 eV, and a large lattice mismatch with
graphene, one would expect that their effect on the graphene
band structure could be negligible. Indeed, it is the case that
the effects induced by proximity of the TMD to the SLG (or
BLG) are quantitatively small. However, the presence of these
effects can be qualitatively very significant due to the fact that
in pristine SLG and BLG the spin-splitting from intrinsic SOC
is very small, of the order of 10 µeV [106]. This means that
even a small enhancement of the SOC induced by the proxim-
ity of a TMD monolayer can profoundly affect the electronic
properties of SLG and BLG.

Ab-initio calculations [107–109] show that semiconduct-
ing monolayer TMDs such as MoS2, MoSe2, MoTe2, WS2,
WSe2, WTe2 can enhance SOC in graphene to induce spin-
splittings of the order of 1 meV, i.e. orders of magnitude larger
than the graphene’s intrinsic SOC. The enhancement increases
with the atomic number of the metal forming the TMD. For
the case of graphene-WSe2 vdW systems the SOC induced
by proximity in graphene is sufficient to create a band inver-
sion of the spin-split bands close to the original graphene’s
Dirac point. Such a band inversion would allow for graphene
ribbons to exhibit the quantum spin Hall effect [108]. The
enhancement of the SOC in graphene-TMD vdW systems has
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been observed, indirectly, via weak antilocalization [110–116]
and spin-relaxation measurements [117–121]. It has also been
suggested that by tuning the twist angle between graphene and
the TMD the nature, from Zeeman-like to Rashba-like, and
strength of the induced SOC can be tuned [122]. Similarly to
the case of graphene-TI systems, also in graphene-TMD het-
erostructures spin and charge transport are coupled [123].

For the case of TMD-BLG vdW systems the resulting struc-
ture of the hybridized bands is richer and tunable via an exter-
nal electric field [109]. For WSe2-BLG ab-initio results show
that the proximity of the TMD induces a gap in BLG of the or-
der of 10 meV and SOC splittings of about 2 meV [109]. Very
recent experiments [124] on symmetric WSe2-BLG-WSe2
vdW systems have shown a strong enhancement of the SOC
in graphene and clear signatures of the SOC-driven band in-
version.

V. SUPERCONDUCTOR-BASED VAN DER WAALS
SYSTEMS

Van der Waals heterostructures constructed with supercon-
ducting layers are extremely interesting because they allow
the realization of novel superconducting states. In particu-
lar, when one of the layers has strong SOC, such heterostruc-
tures can be engineered to realize topologically non-trivial
superconducting states [125–129] as well as states with odd-
frequency pairing [130; 131]. Given the scope of the special
issue, below we focus on the cases in which the vdW het-
erostructure can host odd-frequency superconducting pairing.

A. Odd-frequency pairing

In general, the order parameter describing a correlated elec-
tronic state is given by a many-body wavefunction, which
must be completely antisymmetric under the permutation of
all quantum numbers. This antisymmetry constrains the al-
lowed symmetries of the order parameter. In the limit of static
order parameters and a single relevant band degree of free-
dom, this constraint implies that even-parity order parameters
(s- or d-wave) must be odd in the spin index (spin-singlet)
while odd-parity order parameters (p- or f -wave) must be
even in spin (spin-triplet). The term odd-frequency pairing
refers to the possibility that the many-body state is odd in the
relative time coordinate, or, equivalently, in the relative fre-
quency. Therefore, odd-frequency states must possess spatial
and spin symmetries with the exact opposite correspondence
from the static case: i.e. even-parity states must be spin-
triplet and odd-parity must be spin-singlet. An odd-frequency
state was first proposed by Berezinskii [132] as a possible
superfluid state for He3. Later on, Berezinskii’s proposal
was extended to superconducting systems [133–138]. How-
ever, it has been pointed out that constraints on the electron-
phonon interactions inhibit odd-frequency pairing [139], and
that simple models of intrinsically odd-frequency supercon-
ducting states may be unstable [140–142].

While the status of intrinsic odd-frequency states is un-
certain, much progress has been made toward understanding
how odd-frequency superconducting correlations can be in-
duced using conventional superconductors in heterostructures.
One theoretically well-established example can be found in
superconductor-ferromagnet junctions which allow the con-
version of conventional s-wave spin-singlet Cooper pairs to
odd-frequency spin-triplet pairs, due to the breaking of spin-
rotational symmetry[130; 143–150]. Experimental signatures
of odd-frequency correlations have been observed in real
systems[151–157]. Another notable example is the interface
between a conventional superconductor and a normal metal, in
which odd-frequency pairing can emerge due to broken spa-
tial translation symmetry[158; 159]. In this case, the mag-
nitudes of the odd-frequency correlations dominate over the
even-frequency amplitudes at discrete energy levels coincid-
ing exactly with peaks in the local density of states[159], indi-
cating a relationship between these odd-frequency pair ampli-
tudes and McMillan-Rowell oscillations[160; 161] as well as
midgap Andreev resonances[162–164]. Similar phenomena
have also been predicted to arise in layered two-dimensional
systems, like vdW heterostructures, in which one of the com-
ponents is superconducting[16; 165–172]. Given the growing
number of vdW systems available, the high level of tunability
of their properties, and the presence of a 2D surface accessible
for interrogation by experiments, vdW systems are ideal can-
didates for studying odd-frequency superconducting states.

A set of general criteria for the emergence of odd-frequency
pairing in 2D systems were given in Ref. [16]. To understand
how their results relate to layered vdW systems we will now
provide a sketch of their derivation.

To begin, we consider a vdW system formed by a 2D crystal
with Hamiltonian H2D, and a superconductor with Hamilto-
nian HSC . Without loss of generality we assume the super-
conductor to also be 2D. Let Ht describe tunneling processes
between the 2D and the SC so that the Hamiltonian H for the
entire bilayer system can be written asH = H2D+HSC+Ht,
with

H2D =
∑

k,σ,σ′
c†k,σ [h0(k)σ̂0 + h(k) · σ]σ,σ′ ck,σ′ (18)

HSC =
∑
kσσ′

d†kσh
SC
σσ′(k)dkσ′ +

∑
kσσ′

d†kσ∆σσ′(k)d†−kσ′ + h.c.

(19)

Ht =t
∑
k,σ

d†k,σck,σ + h.c. (20)

where σ̂i are the 2 × 2 Pauli matrices in spin space, c†k,σ
(d†k,σ) and ck,σ (dk,σ) are the creation and annihilation op-
erators, respectively, acting on the fermionic states in the
2DEG (SC) layer with momentum k and spin σ, h0(k) is the
spin-independent part of H2D and h(k) is the field that de-
scribes its spin-dependent part due to an exchange field and/or
spin-orbit coupling. Here, hSCσσ′(k) describes the quasiparticle
spectrum of the normal state of the superconductor, ∆σσ′(k)
is the superconducting order parameter which, in general, has
a linear combination of spin-singlet and spin-triplet terms, and
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t is the tunneling between the 2D system and the SC, which is
assumed to conserve both spin and momentum.

To examine the superconducting pairing induced in the non-
superconducting 2DEG by proximity to the SC, we study the
anomalous Green’s function, or pair amplitude, within the
2DEG, F̂ 2D

k;iωn , which is a 2 × 2 matrix in spin space and a
function of both the crystal momentum k and Matsubara fre-
quency ωn. In the absence of interlayer tunneling t no super-
conducting pairs exist in the 2DEG and therefore F̂ 2D

k;iωn = 0.
However, for t 6= 0 we find that Cooper pairs can tunnel from
the SC into the 2DEG, giving rise to superconducting correla-
tions with novel symmetries which depend on the properties
of the 2DEG. To understand the symmetries of these induced
pairings it is sufficient to consider the leading-order terms in
perturbation with respect to the tunneling strength t:

F̂ 2D
k;iωn = t2 Ĝ2D

k;iωn F̂
SC
k;iωn

(
Ĝ2D
−k;−iωn

)T
, (21)

where F̂SCk;iωn is the anomalous part of the Green’s function for
the SC, given by

F̂SCk;iωn =
(
sSCk,iωn σ̂0 + dk,iωn · σ

)
iσ̂2 (22)

where sSCk,iωn (dk,iωn ) represents the spin-singlet (spin-triplet)
pair amplitudes and Ĝ2D

k;iωn is the normal Green’s function for
the 2DEG when t = 0, given by

Ĝ2D
k;iωn =

(iωn − h0(k))σ̂0 + h(k) · σ
(iωn − h0(k))2 − |h(k)|2 . (23)

Inserting Eqs. (22) and (23) into Eq. (21) we obtain the
expression for F̂ 2D

k;iωn , which can be written as

F̂ 2D
k;iωn = Ak;iωn

(
F oddk;iωn + F evenk;iωn

)
, (24)

where F evenk;iωn (F oddk;iωn ) are strictly even (odd) functions of Mat-
subara frequency ωn, and

Ak;iωn = t2[[(iωn + h0(−k))2 − |h(−k)|2]−1

× [(iωn − h0(k))2 − |h(k)|2]]−1 (25)

is the spin-independent amplitude arising from the product of
the denominators of the Green’s functions Ĝ2D

k;iωn , Ĝ2D
−k;−iωn .

For the most general form of H2D, Ak;iωn has both even and
odd-frequency terms; however, assuming h0(k) = h0(−k)
and |h(k)| = |h(−k)|, which are true for most systems,
Ak;iωn becomes an even function of both frequency and mo-
mentum. In this case the relative contributions from the even-
and odd-frequency pair amplitudes are given by F evenk;iωn and
F oddk;iωn , respectively.

We ca decompose each of these even/odd-frequency ampli-
tudes into spin-singlet and spin-triplet components:

F evenk;iωn =
(
Sevenk;iωn σ̂0 + Deven

k;iωn · σ
)
iσ̂2, (26)

F oddk;iωn =iωn
(
Soddk;iωn σ̂0 + Dodd

k;iωn · σ
)
iσ̂2, (27)

where, for the even-frequency amplitudes we have:

Sevenk;iωn =

[
ω2
n + h20(k)− 1

4
(|h+(k)|2 − |h−(k)|2)

]
sSCk;iωn

−
[
h0(k)h−(k) +

i

2
h+(k)× h−(k)

]
· dk;iωn ,

(28)

Deven
k;iω =

[
ω2
n + h20(k) +

1

4
(|h+(k)|2 − |h−(k)|2)

]
dk;iωn

−ih+(k)× dk;iωn −
1

2
h+(k) (h+(k) · dk;iωn)

+
1

2
h−(k) (h−(k) · dk;iωn)

−
[
h0(k)h−(k)− i

2
h+(k)× h−(k)

]
sSCk;iωn , (29)

and for the odd-frequency amplitudes:

Soddk;iωn = −h+(k) · dk;iωn , (30)

Dodd
k;iω = −h+(k)sSCk;iωn − ih−(k)× dk;iωn , (31)

where h±(k) ≡ h(k) ± h(−k) is the even/odd parity part
of the spin-dependent field in the 2DEG. Here, h+ can be
interpreted as the field arising from ferromagnetic ordering
and h− as the field due to SOC.

Focusing first on the even-frequency spin-singlet ampli-
tudes, we note that the first line in Eq. (28) shows that, as ex-
pected, if the SC layer has spin-singlet pair amplitudes, spin-
singlet pairing is also induced in the 2DEG. Moreover, from
the second line of Eq. (28) we see that, due to the presence
of SOC in the 2DEG, a singlet term can also be induced by
spin-triplet pairing in the SC. It is interesting to note that such
contributions are only possible if h− 6= 0 and can be enhanced
by adjusting the angle between h+(k) and h−(k).

Turning our attention to the induced even-frequency spin-
triplet pairing, we see that the first line in Eq. (29) shows an
induced triplet pairing in the 2DEG directly proportional to
the d vector in the SC, as expected. The second and third lines
in Eq. (29) show that the presence of the spin-dependent h(k)
field in the 2DEG layer induces a rotation of the d vector. The
last line in Eq. (29) shows that the presence of SOC in the
2DEG layer also converts some of the spin-singlet amplitudes
in the SC to spin-triplet pairing in the 2DEG. As in Eq. (28),
we only find this symmetry conversion between triplet and
singlet amplitudes when h− 6= 0.

We now focus on the induced odd-frequency amplitudes.
From Eq. (30) we see that an odd-frequency spin-singlet am-
plitude is induced in the 2DEG layer when h+(k) 6= 0 and
a triplet component is present in the SC. In contrast to the
case of induced even-frequency spin-singlet pairing, this odd-
frequency amplitude emerges due to a conversion of spin-
triplet amplitude in the SC to spin-singlet amplitude in the
2DEG for finite h+(k) not h−(k).

In the case of the odd-frequency spin-triplet pairing,
Eq. (31) shows that two contributions are possible. One of
these involves a conversion from spin-singlet pairing in the SC
to triplet pairing in the 2DEG when h+(k) 6= 0. We note that
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this term, and Eq. (30) are consistent with known results for
the case of ferromagnet/superconductor junctions [130; 143–
150; 173]. The last term in Eq. (31) shows that a triplet com-
ponent in the SC can also induce an odd-frequency triplet term
in the 2DEG in the presence of SOC, h−(k) 6= 0, as long as
h− is not parallel to dk. Typically, for an isolated system,
the superconducting dk vector is parallel to the direction of
the SOC field and so the presence of triplet pairing and SOC
is not sufficient to realize odd-frequency pairing. However,
in a vdW, due to the fact that the vector fields h−(k) and dk

live in different layers, the condition h−(k)×dk can be read-
ily realized, as demonstrated in the concrete example below.
This fact, also considering the great experimental advances in
creating high quality vdW systems comprising a large vari-
ety of materials, considerably enlarges the set of systems in
which odd-frequency superconducting pairing can be realized
and detected.

A real system in which the condition h−(k)× dk 6= 0 can
be realized is a vdW system formed by a monolayer transi-
tion metal dichalcogenide (TMD) placed on a superconduct-
ing surface with Rashba SOC [16]. Considering only states
close to the valence bands in the TMD layer, the Hamiltonian
in Eq (17) can be simplified to obtain:

ĥTMD
k,λ = −

(
a2γ2

u
k2 +

u

2
+ µ

)
+ λασ̂3. (32)

Considering that under parity λ → −λ, we can see that for
a 2D system described by the Hamiltonian given by Eq. (32)
we have h+ = 0, and h− = 2λẑ, where ẑ is the unit vector
normal to the TMD monolayer.

Using the general expressions from Eqs. (28)-(31) we can
obtain the symmetry properties of the superconducting pair
amplitudes induced by proximity in a vdW system formed by
a hole-doped monolayer TMD and a generic superconducting
layer:

Sevenk,λ;iωn =
(
ω2
n + ξ2k + α2

)
sSCk,λ;iωn − 2λαξkẑ · dk,λ;iωn

(33)

Deven
d,λ;iω =

(
ω2
n + ξ2k − α2

)
dk,λ;iωn + 2α2 (ẑ · dk,λ;iωn) ẑ

− 2λαξks
SC
k,λ;iωn ẑ (34)

Soddk,λ;iωn = 0 (35)

Dodd
k,λ;iω = −i2λαẑ × dk,λ;iωn (36)

As described for the general case we see that the presence of
SOC, proportional to α, mixes the singlet and triplet compo-
nents for the even-frequency pair amplitudes. The SOC also
generates an odd-frequency triplet pair amplitude proportional
to the strength of the SOC in the TMD monolayer and the
triplet component of the SC, Eq. (36).

We now consider an effective 2D SC with Rashba
SOC [174], which can be realized on the surface of Pb. The
surface of this superconductor can be described using the
Hamiltonian in Eq. (19) with

ĥSCk = εkσ̂0 + ηẑ · (σ × k) (37)

where εk is the spin-independent part of the electrons’ dis-
persion and η is the strength of the Rashba SOC. The energy

eigenvalues of ĥSCk , Ek = εK ± η|k|, identify the bands of
the SC in the normal phase. For the order parameter, ∆̂,
we assume, as is standard[174], that intraband pairing dom-
inates and obtain the corresponding anomalous Green’s func-
tion FSC in the energy eigenbasis of ĥSCk . Rotating back to
the spin basis in which ĥSCk is expressed in Eq. (37) we obtain

F̂SCk;iωn = ∆
(sSCk;iωn σ̂0 + dk · σ)iσ̂2

(sSCk;iωn)2 − |dk|2
(38)

where ∆ is the superconducting gap, and

sSCk;iωn = ∆2 + ω2
n + ε2k + η2k2 (39)

dk = 2εkη(−ky, kx, 0) (40)

are the singlet and triplet amplitudes, respectively. Notice that
the presence of Rashba SOC gives rise to a triplet component
with an in-plane d vector, i.e. a d vector that is orthogonal to
the h−(k) field due to SOC in the monolayer TMD.

From Eq. (36) we see that in vdW systems composed of a
TMD monolayer and an effective 2D SC with Rashba SOC
an odd-frequency spin-triplet pair amplitude will be induced
with strength proportional to the product of the SOC strength
in the TMD and the Rashba SOC strength in the SC. In this
case, the full anomalous Green’s function, FTMD, has the
form F̂TMD

k,λ;iωn = ATMD
k,λ;iωn

(
F oddk,λ;iωn + F evenk,λ;iωn

)
with

ATMD
k,λ;iωn =

∆t2

[(iωn − ξk)2 − α2]2[(sSCk+Kλ;iωn)2 − |dk+Kλ |2]
,

where F evenk,λ;iωn and F oddk,λ;iωn have the same form as Eqs. (26)
and (27) with

Sevenk,λ;iωn =
(
ω2
n + ξ2k + α2

)
sSCk+Kλ;iωn (41)

Deven
k,λ;iω = −

(
ω2
n + ξ2k − α2

)
dk+Kλ − 2λαξks

SC
k+Kλ;iωn ẑ

(42)

Dodd
k,λ;iω = i4λαηεk+Kλ(k + Kλ) (43)

where Kλ is the momentum vector at the K (K ′) point for
λ = 1 (λ = −1). Here, Dodd

k,λ;iω is the d-vector describing
an odd-frequency spin-triplet pair amplitude. Using the above
expressions, we find that this pair amplitude corresponds to a
term in the anomalous Green’s function of the form FTMD

↑↑/↓↓ ∼
iωnηαεkλ

(
ky ± ikx

)
, where k̄ is the momentum measured

from the center of the BZ.
So far we have assumed that interlayer tunneling conserves

spin and is entirely spin-independent. In general, tunneling
between between materials with different spin eigenstates is
spin-dependent. Such spin-dependence of the interlayer tun-
neling introduces additional mechanisms [147–149; 175; 176]
by which odd-frequency pairing terms can be generated in a
vdW system formed by a superconducting layer and a layer
with strong SOC. Such mechanisms could naturally emerge
in a vdW system formed, for example, by a SC and the sur-
face of a strong 3D TI with a “spin-active” interface, as shown
schematically in Fig. 9.
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Superconductor
Spin-Active Interface 

3D Toplogical Insulator 

z

FIG. 1. (Color online) Sketch of the TI|SC heterostructure con-
sidered. Spin-active interface is present between the superconductor
and the 3D topological insulator. The spin-active interface could be
realized by a thin layer of magnetic material such as EuO.

by the microscopic details of the interface [28,30– 32]. This
process is thought to be a common feature of spin-active
interfaces [24,31,33– 36] and can be thought of as a precession
of the incident electron’s spin about the magnetization axis
of the interface. Let ηk ≡ (θ↑,k + θ↓,k + θ↑,−k + θ↓,−k)/2,
δθk ≡ θ↑,k − θ↓,k and ζk ≡ (δθk − δθ−k)/2, using this con-
vention a spin-singlet pair |↑⟩k|↓⟩−k − |↓⟩k|↑⟩−k is converted
to eiηk (eiζk |↑⟩k|↓⟩−k − e−iζk |↓⟩k|↑⟩−k) upon scattering at the
interface. Hence a singlet pair in the superconductor develops
a triplet component proportional to sin ζk at the interface.
Thus we can see that the most important consequence of the
presence of SDIPs is the conversion of purely spin singlet
pairing amplitudes to a linear combination of singlet and triplet
amplitudes at the interface. Any material that possesses this
property could be used to capture the effects we derive for
SDIPs. By spin flipping (SF) we refer to tunneling processes
that do not conserve the spin of transmitted electrons. This
process could be realized by any material whose quasiparticle
states are in a spin state that is a different linear combination of
spin up and spin down from the superconductor. An example
of this kind of material would be a ferromagnetic half metal.

The main difference between a topological insulator and
other materials for which the effect of spin-active interfaces
have been studied is that, at low energies, topological insulator

states possess a spin lying in the plane of the surface whose
direction is locked with the direction of the momentum. We
will show that this affects the symmetries of the induced
pairing, creating odd-frequency m = 1 triplet (S = 1; m = 1)
correlations for any spin-active interface that confers SDIPs.

To model the system in Fig. 1 we employ the Hamiltonian:
H = HT I + HSC + Ht where:

HT I =
∑

k,λ,λ′

(!vẑ · σ × k − µσ0)λλ′c
†
k,λck,λ′ ,

HSC =
∑

k,λ,λ′

(ϵkd
†
k,λdk,λ + (̂λλ′d

†
k,λd

†
−k,λ′ ) + H.c., (1)

Ht =
∑

k,λ,λ′

T̂λλ′c
†
k,λdk,λ′ + H.c.,

where σ0 is the 2 × 2 identity matrix in spin space, σ is the
vector (σ1,σ2,σ3) formed by 2 × 2 Pauli matrices in spin space,
k = (kx,ky,0), v is the Fermi velocity of the surface states in
the TI, µ is the chemical potential in the TI surface, c†

k,λ (d†
k,λ)

creates a quasiparticle with momentum k and spin λ in the TI
surface (superconductor), ϵk is the energy of a superconductor
quasiparticle state measured from the chemical potential in
the superconductor, (̂ = −(0iσ2 is the order parameter of
the superconducting condensate, and T̂ = (t0σ0 + t · σ ) with
t = (t1,t2,t3). Notice that the tunneling term accounts for the
possibility of spin-flip processes at the interface if t ̸= 0.

To investigate the effect of the spin-active interface on
proximity-induced pairing in the TI we calculate the pairing
amplitude in the TI as a function of momentum k and
Matsubara frequency ω, F̂ T I (k,ω). To leading order in T̂ we
have:

F̂ T I (k,ω) = ĜT I
0 (k,ω)T̂ F̂ SC

θk
(k,ω)T̂ TĜT I

0 (−k, − ω)T, (2)

where we have included SDIP by a transformation in spin space
at the interface F̂ SC

θk
(k,ω) = eiηkei

δθk
2 σ3 F̂ SC

0 (k,ω)ei
δθ−k

2 σ3 ,
where F̂ SC

0 (k,ω) = −(̂/(ω2 + ϵ2
k + (2

0) is the pairing am-
plitude in the SC.

Evaluating the expression on the right-hand side of Eq. (2)
we find

F̂ T I (k,ω) = −i(0(
ω2 + ϵ2

k + (2
0

)
[(iω + µ)2 − !2v2k2][(iω − µ)2 − !2v2k2]

eiηk f̂ T I (k,ω),

where

f̂ T I (k,ω) = f T I
0 σ0 + f T I

1 σ1 + f T I
2 σ2 + f T I

3 σ3 (3)

and

f T I
0 = 2 sin ζk

[
−

(
ω2 + µ2 + !2v2(k2

x − k2
y

))
(t0t1 − it2t3) − 2!2v2kxky(t0t2 + it1t3) + iω!vky

(
t2
0 − 2t2

3 + |t|2
)]

+ 2 cos ζk
[
!vkxµ

(
t2
0 − |t|2

)]

f T I
1 = sin ζk

[
−(ω2 + µ2 − !2v2k2)

(
t2
0 − 2t2

3 + |t|2
)
− 4iω!v[kx(t0t2 + it1t3) − ky(t0t1 − it2t3)]

]

f T I
2 = sin ζk[4µ!v[kx(t0t1 − it2t3) + ky(t0t2 + it1t3)]] − cos ζk

[
(ω2 + µ2 + !2v2k2)

(
t2
0 − |t|2

)]

f T I
3 = −2 sin ζk

[(
ω2 + µ2 − !2v2(k2

x − k2
y

))
(t1t3 − it0t2) − 2!2v2kxky(t2t3 + it0t1) + ω!vkx

(
t2
0 − 2t2

3 + |t|2
)]

− 2 cos ζk
[
i!vkyµ

(
t2
0 − |t|2

)]
. (4)

165309-2

Figure 9. Schematic representation of a vdW system formed by a
SC and the surface of a strong 3D TI. Adapted with permission from
Phys. Rev. B 89, 165309 (2014).

There are two basic mechanisms by which an interface can
actively affect the spin state |σ〉: (i) it can impart a spin-
dependent phase |σ〉k → eiθσ,k |σ〉k due to the precession of
the spin around a magnetic moment present at the interface;
(ii) the tunneling Hamiltonian can be off-diagonal in the spin
basis, t̂ = t0σ̂0 + t · σ, where t is a 3-components vec-
tor, leading to spin flips. For case (i), when the interlayer
tunneling induces a spin-dependent phase, we can see that a
singlet state, |↑〉k |↓〉−k − |↓〉k |↑〉−k, is converted, after tun-
neling, to the state eiηk

(
eiζk |↑〉k |↓〉−k − e−iζk |↓〉k |↑〉−k

)
,

where ηk ≡ (θ↑,k + θ↓,k + θ↑,−k + θ↓,−k)/2 and ζk ≡
(θ↑,k−θ↓,k +θ↑,−k−θ↓,−k)/2. Therefore, we see that a triplet
component with amplitude proportional to sin ζk emerges due
to the spin-dependent phase introduced by a spin-active inter-
face, even when the SC only has a singlet pairing.

Using the same leading-order perturbation theory discussed
above we can deduce the symmetries of the proximity-induced
pair amplitudes in a vdW system that possesses a spin-active
interface. Here we briefly sketch how the approach leading
to Eq. (21) must be modified in this case, see Ref. [149] for
more details. To account for spin-dependent phase factors we
replace the anomalous Green’s function of the superconduct-
ing layer, F̂SC(k, ω), with a rotated version:

F̂SCθk
(k, iωn) = eiηkei

δθk
2 σ3 F̂SC(k, iωn)ei

δθ−k
2 σ3 . (44)

Then, we obtain the following leading-order contribution to
the anomalous Green’s function in the 2DEG layer:

F̂ 2D
k;iωn = Ĝ2D

k;iωn t̂ F̂
SC
θk

(k, iωn) t̂T
(
Ĝ2D
−k;−iωn

)T
, (45)

From Eq. (45) we can readily deduce the symmetries of in-
duced pair amplitudes for a variety of vdW systems by insert-
ing the appropriate system-specific expressions for G2D and
FSC .

In Ref. [149], the pair symmetries given by Eq. (45) were
examined assuming a conventional spin-singlet superconduct-
ing layer. The analysis was performed for three different
2DEG layers: (i) the surface of a 3D topological insulator
(TI); (ii) a ferromagnet with in-plane magnetization, i.e. an
easy plane ferromagnet (FE); and (iii) a ferromagnet with per-
pendicular magnetization, i.e. a z-axis ferromagnet (FZ). We

summarize the results in Table I, indicating whether or not
odd-frequency pairing can be realized in each of these systems
for different kinds of spin-active interfaces, and its character
(singlet or triplet).

Interface FZ-SC FE-SC TI-SC
Not spin active T T -
Spin-dep. phases T & S T T
Spin flip T T -
Spin-dep. phases & spin flip T & S T & S T

Table I. Conditions for the realization of odd-frequency pairing, and
its spin symmetry, singlet (S) or triplet (T), for three superconductor-
based vdW heterostructures, FZ-SC, FE-SC, and TI-SC, including
the effect of a spin-active interface. A “-” indicates that no odd-
frequency pairing is present.

From Table I we see that when the 2DEG layer is either an
FZ or FE, odd-frequency pairing is induced for any kind of
interface, while odd-frequency pairing can only be induced in
the TI in the presence of spin-dependent phases. Comparing
the different symmetries for the different kinds of interfaces
we see that for both the FZ and FE, spin-triplet pairing is al-
ways induced. However, spin-singlet pairing can be induced
in the FZ due to spin-dependent phases, even without spin
flips, while spin-singlet pairing can only be induced in the FE
in the presence of both spin-dependent phases and spin flips.
For the TI, the odd-frequency pairing must be spin-triplet.

We note that odd-frequency pairing has also been investi-
gated in buckled honeycomb systems possessing proximity-
induced superconductivity[170]. In contrast to the re-
sults presented in this section, in that work the pres-
ence of the superconducting layer was accounted for by
adding a spin-singlet BCS order parameter to the Kane-Mele
Hamiltonian[177; 178] and computing the on-site order pa-
rameter self-consistently. For large doping, the authors found
that bulk odd-frequency intersublattice pairing emerges when
the sublattice symmetry is broken by, for example, an electric
field perpendicular to the plane, similar to the odd-frequency
interband pairing found in multiband superconductors[179–
184]. At low doping, when the low-energy states are localized
at the edge of the sample, the authors performed their analysis
in real space for different edge terminations, finding that odd-
frequency pairing arises generically, even in the absence of
an external field. In the case of the zig-zag edge termination,
this was due to the asymmetry between the two sublattices at
the edge[170]. In the case of arm chair terminations, the odd-
frequency pairing was due to the asymmetry between every
other pair of sublattices[170]. In both cases the odd-frequency
pairing arises due to an inhomogeneity of the order parame-
ter which naturally occurs in such finite-size systems. This
phenomenon was also studied in the 2D surfaces of 3D topo-
logical insulators in the presence of an inhomogeneous super-
conducting order parameter[167], finding qualitatively similar
results.
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To conclude this subsection we note that the pair amplitudes
given by both Eqs. (21) and (45) represent pairing between
electrons in the same 2D layer. However, when the vdW sys-
tem possesses more than one normal layer, interlayer pairing
can also be important, as investigated in Ref. [185]. In that
work, a similar analysis to the one leading to Eqs. (21) was
performed for a bilayer system coupled to a superconducting
layer. The authors explicitly investigated the possibility of in-
terlayer pairing. Interestingly, the authors found that, in gen-
eral, because tunneling between adjacent layers dominates,
an asymmetry emerges between the induced gaps on the two
layers. This asymmetry leads directly to odd-frequency in-
terlayer pairing in such vdW heterostructures[185], similar to
phenomena studied in multiband superconductors[179–184],
double quantum dots[186; 187], and double nanowires[188;
189].

B. Proximity induced Ising pairing

We now focus on the set of superconductor-based vdW sys-
tems in which the superconducting layer is a TMD mono-
layer. One of the key features of superconducting TMD mono-
layers is that the superconducting state is extremely robust
against in-plane magnetic fields: superconductivity survives
for magnetic fields much larger than the Pauli paramagnetic
limit. This is due to the strong spin-splitting of the bands at
the Fermi surface in metallic monolayer TMDs induced by
strong SOC and a lack of inversion symmetry. These con-
ditions favor a particular spin orientation of the Cooper pairs
and the resulting superconducting pairing is termed Ising pair-
ing [190; 191].

The most commonly studied superconducting TMD is
NbSe2 [190; 191]. The lattice structure is the same as the one
shown in Fig. 8 (a). In its monolayer form the normal state
spectrum of NbSe2 has Fermi pockets around the Γ point, and
around the corners (K and K′ points) of the BZ, as shown
in Fig. 10 (a). As the figure shows, the Fermi surfaces are
spin-split due to SOC and broken inversion symmetry. The
splitting of the Fermi surface is much stronger for the K and
K′ pockets than for the Γ pocket given that, at the Γ point,
the k and −k states coincide. As a consequence, in the super-
conducting state, the pairing at the K and K′ pockets is much
more robust against external in-plane magnetic fields that at
the Γ pocket. Such a difference is hard to detect experimen-
tally in isolated monolayers of NbSe2 given that even when
the Zeeman term due to an in-plane magnetic field is large
enough to completely suppress the superconducting gap at the
Γ pocket, the superconductivity arising from the states around
the K (K′) pockets survives and therefore prevents the use
of transport measurements to observe the breakdown of the
superconducting state at the Γ pocket.

In vdW systems formed by one monolayer of a material
such as NbSe2 and another, non-superconducting layer we
can expect that the superconducting pairing induced by prox-
imity in the normal layer will retain some of the properties of
the pairing in NbSe2 and, in particular, its Ising nature. A nat-
ural candidate system to combine with NbSe2 is graphene.

As pointed out above, there is a large mismatch between
graphene’s and TMD’s lattice constants and so one would ex-
pect that no significant hybridization between the graphene’s
and the NbSe2’s states could take place. However, for some
twist angles the Fermi pockets of NbSe2 are large enough to
overlap with graphene’s Dirac points. This is displayed in
Fig. 10 (a) where the green and blue lines show the spin-
split Fermi surfaces of NbSe2, and the black circle the po-
sition of graphene’s Dirac points as the twist angle θ is var-
ied between 0 and 360◦. For a range of angles, ±7.2◦ [192],
around 0◦ (and multiples of 60◦) the Dirac points intersect
the K (or K′) Fermi pocket of NbSe2, and for a range of an-
gles, ±3.9◦ [192], around 21.9◦ (and multiples of 60◦) the
Dirac points intersect the Γ Fermi pocket of NbSe2. As a
consequence, graphene can be used to probe the differences
between the electronic states of the different Fermi pockets
of NbSe2, including properties of the superconducting pair-
ing [193].

Ab-initio calculations [192] show that when placed on
NbSe2 graphene becomes hole doped, Fig. 10 (b), so that the
Fermi energy in the graphene layer is ∼ 400 meV below the
Dirac point. These calculations also show [192] that the in-
terlayer tunneling between the two systems is of the order of
20 meV and that this value, and the amount of charge transfer
do not depend significantly on the twist angle. Using these
values we can construct a continuum model as described in
Sec. II to obtain the low-energy properties for generic values
of the twist angle.

SUPERCONDUCTIVITY IN TWISTED GRAPHENE … PHYSICAL REVIEW B 99, 235404 (2019)

Including the superconducting pairing, the effective low-
energy Hamiltonian for NbSe2 for states close to the ! point
takes the form

Ĥ (SC)
!s

=
∑

k

"†
ksH

(SC)
!s

"ks, (21)

where "†
ks is the Nambu spinor "†

ks = (D†
k, D−k ),

H (SC)
!s

=
[

H!s (k) i#!σ2

−i#!σ ∗
2 −HT

!s
(−k)

]

, (22)

H!s (k) is given by Eq. (5), and #! is the size of the supercon-
ducting gap of NbSe2 close to the ! point.

For states close to Ks, including the superconducting
pairing, the Hamiltonian for NbSe2 becomes

Ĥ (SC)
sK =

∑

kn

"†
ks

H (SC)
sK "ks , (23)

where now k (−k) is understood to be measured from Ks (K′
s),

and

H (SC)
sK =

[
HsKs (k) i#Kσ2

−i#Kσ ∗
2 −HT

sK′
s
(−k)

]

, (24)

HsKs (k), HsK′
s
(k) are given by Eq. (8).

For monolayer NbSe2, the superconducting gap is expected
to have the same value, #, on the ! and K pocket. In the
remainder, we conservatively assume # = 0.5 meV [31].

The Hamiltonian for the graphene-NbSe2 system in-
cludes the superconducting pairing in NbSe2. For the
case when Kg is close to Ks, the Hamiltonian becomes
Ĥ (SC)

KgKs
=

∑
k "†

KgKs,SC,kH (SC)
KgKs

(k)"KgKs,SC,k, with "†
KgKs,SC,k =

("†
KgKs,k,"

T
K ′

gK ′
s,−k),

H (SC)
KgKs

(k) =
[

HKgKs (k) #K%

#K%† −HT
K ′

gK ′
s
(−k)

]

, (25)

and

% =

⎡

⎢⎢⎢⎣

04×4 04×2 04×2 04×2

02×4 iσ2 02×2 02×2

02×4 02×2 iσ2 02×2

02×4 02×2 02×2 iσ2

⎤

⎥⎥⎥⎦
, (26)

where 0m×n is the zero matrix with m rows and n columns.
Similarly, for the case when the low-energy states of

graphene are close to the ! point of the extended BZ
of NbSe2, the Hamiltonian for the whole system becomes
Ĥ (SC)

Kg!s
=

∑
k "†

Kg!s,SC,kH (SC)
Kg!s

(k)"Kg!s,SC,k, with "†
Kg!s,SC,k =

("†
Kg!s,k,"

T
K ′

g!s,−k),

H (SC)
Kg!

(k) =
[

HKg! (k) #!%

#!%† −HT
K ′

g!
(−k)

]

. (27)

III. RESULTS

The large lattice mismatch between graphene and NbSe2
would suggest that even in the absence of any twist angle,
the electronic states of the two systems would not hybridize.
However, this does not take into account the large size of

FIG. 2. Overlap of the Fermi surfaces of monolayer NbSe2 and
graphene. The blue (green) FSs are the NbSe2 FSs for spin up
(down), respectively, the black circle shows the position of the
graphene Dirac point for all possible twist angles, and the red circles
show the region within which the graphene FS is confined as the twist
angle is varied.

NbSe2’s Fermi pockets. As shown in Fig. 2, there is a large
set of values of θ for which the Dirac point of graphene
intersects the NbSe2’s FS either around the K points or around
the ! point in the repeated zone scheme. For these points,
the electronic states of graphene and NbSe2 are expected to
hybridize.

From the results shown in Fig. 2, we see that for small
values of θ , we can expect that the graphene’s low-energy
states close to the Dirac point will hybridize with the NbSe2’s
states close to the K point. For values of θ close to 30◦, we
see that graphene’s states will hybridize with NbSe2’s states
close to the ! point. For this reason, to estimate the charge
transfer and the strength of the graphene-NbSe2 tunneling in
the two situations, we performed ab initiocalculations for a
commensurate heterostructure with θ = −65.2◦, and one with
θ = 33.0◦. The parameters identifying these commensurate
structures are given in Table I and the corresponding primitive
cells are shown in Fig. 3.

The ab initiocalculations return the band structure shown
in Figs. 4 and 5. In these figures, the dashed blue lines
show the bands of isolated graphene. The left panels show
the results obtained without including spin-orbit effects and
the right panels the results obtained taking into account the

FIG. 3. Commensurate graphene-NbSe2 structure corresponding
to the parameters listed in Table I. (a) is the configuration for θ =
−65.20. (b) is the configuration for θ = 33.00. The red (blue) spheres
show Nb (Se) atoms, the graphene lattice is shown in yellow.
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FIG. 4. Bands for the commensurate graphene-NbSe2 structure
shown in Fig. 3(a) for which θ = −65.2◦ so graphene’s FS overlaps
with NbSe2’s FS pocket around the K point. (a) No SOC, (b) with
SOC. (c): Low-energy detail of (a). (d): Low-energy detail of (b).

presence of SOC. Panels (c) and (d) show an enlargement at
low energies of the results shown in panels (a) and (b).

The results of Figs. 4(b) and 5(b) clearly show that there
is a significant charge transfer between graphene and mono-
layer NbSe2, resulting in hole doping of the graphene sheet
corresponding to a Fermi energy of about −0.4 eV. They also
show that the amount of charge transfer does not depend on

FIG. 5. Bands for the commensurate graphene-NbSe2 structure
shown in Fig. 3(b) for which θ = 33◦ so graphene’s FS overlaps with
NbSe2’s FS pocket around the " point. (a) No SOC, (b) with SOC.
(c): Low-energy detail of (a). (d): Low-energy detail of (b).

TABLE II. Values of the twist angle θ for which the graphene’s
FS overlaps with NbSe2’s FS pocket around the K point or "

point. For θm(K) − δθ (K) ! θ ! θm(K) + δθ (K), θm(") − δθ (") !
θ ! θm(") + δθ ("), graphene’s FS overlaps NbSe2’s K pocket, "

pocket, respectively. n is an integer between 0 and 5.

TMD (1L) θm(K) δθ (K) θm(") δθ (")

NbSe2 00 + n ∗ 600 7.20 21.90 + n ∗ 600 3.90

37.50 + n ∗ 600 3.90

the value of the twist angle θ . Considering the finite extension
of the graphene’s FS due to the charge transfer shown in
Figs. 4 and 5 between NbSe2 and graphene, we obtain that
there is a significant range of values of θ for which the
graphene’s FS intersects the NbSe2 FS, and for which we can
then expect non-negligible hybridization of the graphene and
NbSe2 states. This is shown in Fig. 2 in which the red circles
delimit the boundaries of the graphene’s FS as θ is varied.
Table II shows the range of values of θ extracted from Fig. 2
for which the graphene’s FS is expected to intersect either one
of the NbSe2’s FS pockets around the K (K ′) point, or around
the " point. In this table, θm(K ) [θm(")] is the angle in the
middle of the range 2δθ (K ) [2δθ (")] of angles for which the
graphene’s FS intersects the NbSe2’s FS.

The ab initioresults allow us also to estimate the strength
of the tunneling between graphene and NbSe2. In Figs. 4(c),
4(d), 5(c), and 5(d), we can see the avoided crossings close
to the Fermi energy between the graphene and NbSe2 bands.
The amplitude of such crossings provides an estimate of
the tunneling strength t between the graphene sheet and the
monolayer of NbSe2. We find that both for the case when
the graphene’s FS intersects the NbSe2’s pocket around the
K point and when it intersects the NbSe2’s FS pocket around
the " point, t ≈ 20 meV and so in the remainder we set
t = 20 meV.

We first consider the case when graphene’s FS intersects
the FS pocket of NbSe2 close to the K point, i.e., −7.2◦ <
θ < 7.2◦, and $ = 0. Figure 6 shows the results for the FS of
the hybridized system in the limit when no superconducting
pairing is present in NbSe2: the left (right) column shows the
FS around the K (K′) of graphene. Figures 6(a) and 6(b) show
the relative position in momentum space of graphene’s FS and
NbSe2’s FS for the case when θ = 0 and t = 0, taking into
account the “folding” of the NbSe2’s FS pockets due to the
fact that the three K (K′) corners of the BZ are equivalent. The
graphene FS is shown in red and the spin-splitted NbSe2’s FS
in blue and green. We use this color convention throughout
this paper. A zoom closer to the graphene’s K point, Figs. 6(c)
and 6(d), clearly shows the overlap of the graphene’s FS with
the NbSe2’ FS pockets. When t ̸= 0, the graphene and NbSe2
states hybridize, giving rise to the reconstructed FSs shown
in Figs. 6(e) and 6(f). Figures 6(e) and 6(f) show that the
graphene’s FS, due to the hybridization with NbSe2, becomes
spin split.

Figure 7 shows the results for the case when θ = 2◦, left
column, and θ = 6◦, right columns. For these values of the
twist angle, the low-energy states of graphene are still close
to the low-energy states of NbSe2 located around NbSe2’s K
points. For θ = 2◦, the graphene and NbSe2 low-energy states

235404-6

(a) (b)

Figure 10. (a) Fermi surfaces of monolayer NbSe2. The blue (yel-
low) FSs are the NbSe2 FSs for spin up (down) respectively, the
black circle shows the position of the graphene Dirac point as θ is
varied between 0 and 360◦. The red circles delimit the region within
which the graphene FS is confined as the twist angle is varied. (b)
Low energy band structure, in red, of a graphene-NbSe2 systems
obtained from ab-initio calculations including relativist corrections
for a commensurate stacking corresponding to θ = −65.2◦. The
blue lines show the low energy bands of an isolated graphene layer
with doping corresponding to the charge transfer occurring when
graphene is place on NbSe2. detail of (a). (d): low energy detail
of (b). Adapted with permission from Phys. Rev. B. 99, 235404
(2019)

For twist angles such that the Fermi surface of graphene
touches one of the Fermi pockets of NbSe2, superconducting
pairing can be induced in the graphene layer. Figure 11 (a)
shows the value of the induced gap, ∆ind, in the graphene
layer as a function of the twist angle. The red circles indi-
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cate the values of ∆ind for the cases when the graphene FS
touches the K (K′) Fermi pocket of NbSe2. The blue squares
denote the cases when the graphene FS touches the NbSe2
Fermi pocket around the Γ point. These results show that in
superconductor-based vdW systems such as NbSe2-graphene
heterostructures, the size of the gap induced by proximity can
be strongly tuned by varying the twist angle.

Figure 11 (b) shows how the proximity-induced supercon-
ducting gap in the graphene layer depends on the strength of a
Zeeman term, Vz , due to the presence of an in-plane magnetic
field, for different values of the twist angle. The solid lines
with circles show the results for values of θ such that the low
energy states in graphene hybridize with the low energy states
close to the K (K′) point in NbSe2. The dashed lines with
squares show the results for the cases where the graphene FS
touches the NbSe2 Fermi pocket at the Γ point. We see that in
the first case the induced superconducting gap is much more
robust against the presence of an in-plane field than in the sec-
ond case. This is a consequence of the fact that, for the first
case, the graphene is effectively probing the superconducting
gap of NbSe2 at the K (K′) where the spin-splitting due to
the SOC is much stronger than for the pocket around the Γ
pocket, and therefore the Ising nature of the pairing is much
more pronounced.

SUPERCONDUCTIVITY IN TWISTED GRAPHENE … PHYSICAL REVIEW B 99, 235404 (2019)

FIG. 12. (a) Plot full DOS for graphene-NbSe2 heterostructure
for θ = 0. (b) Low-energy zoom of panel (a), for several values of
θ for which the graphene’s FS is touching NbSe2 K point valley.
(c) Same as (b) for values of θ for which the graphene’s FS overlaps
with NbSe2 pocket around the " point.

This is due to the fact that for θ ≈ 23◦, there is a very
strong overlap of the graphene and NbSe2 FSs. #ind rapidly
decrease as θ deviates from 23◦ and becomes an order of
magnitude smaller when θ = 16◦. #ind(θ ) has a lower and
broader peak for θ = 0, for which #ind = 0.05 meV, i.e., for
the situation in which the graphene’s FS has the maximum
overlap with the NbSe2 K pockets. As θ increases from zero,
#ind smoothly decreases and becomes negligible for θ ≈ 9◦.
Due to the symmetry of the system, the behavior of #ind(θ )
has a “mirror” symmetry around θ = 30◦ and is periodic with
period equal to 60◦, as exemplified by Fig. 13. We notice that
the range of values of θ for which #ind is not vanishingly
small is larger than what we can infer by simply looking at the

FIG. 13. Induced gap #ind as a function of twist angle θ .

FIG. 14. Induced gap #ind as a function of Zeeman field, Vz.
The solid lines (circles) show the results for values of θ for which
graphene’s FS overlaps with NbSe2’s K pockets. The dashed lines
(squares) show the results for values of θ for which graphene’s FS
overlaps with NbSe2’s " pocket.

overlaps of the graphene and NbSe2 FSs, Fig. 2. The reason is
that for finite t , graphene and NbSe2 states that are within the
energy window |t | can still hybridize resulting in a nonzero
#ind.

Figure 13 shows that in a graphene-NbSe2 structure, the
superconducting gap can be strongly tuned by varying the
twist angle and that, counterintuitively, the maximum induced
gap is achieved for a value of θ for which the graphene’s FS
overlaps with the " pocket of NbSe2 in the second BZ.

Due to the strong SOC in NbSe2, the in-plane critical
field is much larger than the field corresponding to the Pauli
paramagnetic limit. Due to the fact that SOC is also induced
into the graphene layer via proximity effect, we find that
also for graphene-NbSe2 heterostructures, the in-plane upper
critical field is much larger than the Pauli paramagnetic limit.
This is shown in Fig. 14 in which we plot the evolution of
#ind in the presence of a Zeeman term Vz both for values of
θ corresponding to the case when the graphene’s FS overlaps
NbSe2’s K pockets (solid lines and circles), and for values of
θ corresponding to the case when the graphene’s FS overlaps
NbSe2’s " pocket (dashed lines and squares). We see that in
both cases, #ind remains finite for Vz as large as 40 times the
induced gap of the system at zero magnetic field. However, it
is also evident that the suppression of #ind due to the magnetic
field is weaker, and almost independent of θ , for the case
when graphene’s FS overlaps NbSe2’s K pockets. This is a
consequence of the fact that in NbSe2 the bands’ spin splitting
due to SOC is much stronger for the K pockets than for the "
pocket.

From Fig. 14, we notice that for θ = 22◦ the dependence
of #ind on the Zeeman term deviates from the dependence
that we find for the other values of θ : #ind suddenly decreases
when Vz ≈ 15#ind(Vz = 0) and it exhibits oscillations for
larger values of Vz. The reason is that for this value of θ ,
there are several points in momentum space for which the
induced gap is close to the minimum value and, as shown in
Figs. 15(a)– 15(c), as VZ increases the point, k∗, in momentum
space where the induced gap is minimum moves. This is in
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(a) (b)

Figure 11. (a) Induced superconducting gap, ∆ind, into the graphene
layer as a function of the twist angle. (b) ∆ind as a function of Zee-
man field Vz The solid lines (circles) show the results for values of θ
for which graphene’s FS overlaps with NbSe2’s FS pockets around
the K (K′). The dashed lines (squares) show the results for values of
θ for which graphene’s FS overlaps with NbSe2’s FS pocket around
the Γ point. Adapted with permission from Phys. Rev. B. 99, 235404
(2019)

The results of Fig. 11 (b) show that in vdW systems like
graphene-NbSe2, the Ising character of the induced supercon-
ducting pairing can be tuned via the twist angle. In addition,
they show that in these types of structures graphene can be
used to probe the relative strength of the gaps on different
parts of the FS of the substrate, and the robustness of these
gaps to external magnetic fields.

VI. CONCLUSIONS

In this article we have reviewed recent work on heteroge-
nous van der Waals systems in which one of the components
has strong spin-orbit coupling. The field of van der Waals sys-
tems is now very large and so we have restricted the discussion
to a few exemplary vdW systems.

We first presented the general effective model to obtain the
low energy electronic spectrum for a generic stacking con-
figuration. The model relies on parameters that must be ob-
tained via ab-initio calculations, or, when possible, directly
from experimental measurements. We then discussed, in de-
tail, the case of a van der Waals system formed by coupling
a single layer of graphene to the surface of a three dimen-
sional strong topological insulator. We discussed how the hy-
bridization between the states in these two systems strongly
enhances the spin-orbit coupling of the graphene layer. We
then considered the electronic transport of graphene-TI bilay-
ers and showed how the enhancement of the spin-orbit cou-
pling in graphene, and the additional screening of charge im-
purities by the graphene layer, can lead to a considerable am-
plification of spin-dependent effects, such as the Edelstein ef-
fect. We briefly discussed the case of heterostructures formed
by graphene and semiconducting transition metal dichalco-
genides.

In the second part of the work we discussed the case
of heterogenous vdW systems in which one of the com-
ponents is superconducting. Given the scope of this spe-
cial issue, particular focus was placed on systems in which
odd-frequency pairing can be realized. We first presented a
general analysis allowing the identification of conditions for
realizing odd-frequency pairing based on a combination of
proximity-induced superconductivity and spin-orbit coupling
in superconductor-based vdW systems. Based on this general
treatment, we observed that vdW systems with spin-orbit cou-
pling are ideal systems for realizing odd-frequency pair corre-
lations. A distinct advantage over bulk superconductors with
a similar degree of spin-orbit coupling is that the direction of
the field describing the spin-orbit coupling and that of the dk

vector describing the spin configuration of a triplet supercon-
ductor can be completely different since they belong to differ-
ent layers in the vdW system. After this general discussion,
we examined a concrete example in which this condition can
be realized: a vdW system formed by a monolayer transition
metal dichalcogenide and a two-dimensional superconductor
with Rashba spin-orbit coupling. We then discussed the case
of vdW systems in which the interface between the super-
conducting layer and the normal layer causes the interlayer
tunneling to be spin-dependent. We reviewed the conditions
under which such a “spin-active” interface can lead to the for-
mation of odd-frequency superconducting pairing. Finally, we
discussed the case in which the superconducting layer exhibits
Ising superconductivity, as in monolayer NbSe2. In particu-
lar, we saw that in graphene-NbSe2 vdW systems the size of
the superconducting gap, and its robustness against in-plane
magnetic fields, strongly depends on the relative twist angle
between the layers.

We emphasize that one of the most interesting features of
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van der Waals systems is that the choice of layers is, to a large
extent, not constrained by chemistry. On top of the flexibility
in the choice of constituent layers, recent experimental devel-
opments demonstrating that the relative twist angle between
layers can be controlled within a fraction of degree allow for
an incredible amount of tunability of the interlayer coupling.
As we have seen in our discussion of just a limited sample of
possible van der Waals systems with spin-orbit coupling, the
ability to combine layers with different properties can be used
to realize and control exotic superconducting states and engi-
neer systems with strong spin-dependent transport effects. By
continuing to study the myriad combinations of the growing
number of two-dimensional crystals, we expect many more
novel and surprising electronic properties will be discovered
in van der Waals structures.
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