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We identify three dimensional higher-order superconductors characterized by the coexistence of one-
dimensional Majorana hinge states and gapped or gapless surface sates. We show how such superconductors
can be obtained starting from the model of a spinful quadrupolar semimetal with two orbitals and adding an
s-wave superconducting pairing term. By considering all the possible s-wave pairings satisfying Fermi-Dirac
statistics we obtain six different superconducting models. We find that for two of these models a flat-band of
hinge Majorana states coexist with surface states, and that these models have a non-vanishing quadrupole-like
topological invariant. Two of the other models exhibit hinge states in the presence of superconductivity and an
additional Zeeman term in which case the hinge states are helical, dispersive, and localized only at two of the
four hinges. We find that these states are protected by combinations of rotation and mirror symmetries, and the
pair of corners exhibiting hinges states switches upon a change of sign of the Zeeman term. Furthermore, these
states can be reduced to a single hinge with suitable perturbations. The remaining two models retain gapless
bulk and surface states that spectroscopically obscure any possible hinge states.

The modern theory of polarization for crystalline insula-
tors [1] has revealed that in crystals a dipole moment can be
expressed in terms of Berry phases, and that a finite dipole
necessarily implies the presence of boundary charges. The
presence of nontrivial Berry phases and boundary states are
the hallmarks of topological systems [2], and indeed it is now
clear that there is a strong connection between the theory of
topological insulators (TIs) and systems with quantized dipole
moments[3–5]. This connection has led to the realization that
the extension of the modern theory of polarization to higher
multipole moments allows the identification of new classes of
topological crystalline insulators [6, 7], termed “higher-order”
TIs. Within this framework, a higher-order multipole TI of or-
der m has a quantized nonzero electric mth-pole in the bulk
(with m = 1 for a dipole, m = 2 for a quadrupole,...) and
localized charges at its d −m-dimensional boundaries, d be-
ing the insulator’s spatial dimension. Since the work of Refs.
6 and 7 many proposals of higher-order TIs of various types
have been presented [8–12]. Higher-order topological insu-
lating phases have been realized in metamaterial arrays [13–
15], and it has been proposed that bismuth [10], strained
SnTe[8], and some 2D transition metal dichalcogenides [16]
are second-order TIs. In addition, there has been exciting new
work on higher order topological superconductors and topo-
logical semimetals [9, 16–23].

In this work we study superconducting instabilities of a 3D
higher order topological quadrupolar semimetal. We focus
on superconducting states obtained through s-wave supercon-
ducting pairing, and identify 3D higher-order topological su-
perconductors that may manifest surface and/or hinge states,
as summarized in Fig. 1. We find that some of the higher-
order topological superconductors that we obtain are gapped
in the bulk, but have 2D nodal Dirac superconductors on their
surfaces, and flat bands of quasiparticle states on their hinges.
We term such superconductors second-order Dirac supercon-
ductors Fig. 1 (a). We also obtain higher-order topological
superconductors with gapped surfaces and non-chiral hinge

FIG. 1. Summary illustration of the models with hinge modes studied
in this work. (a) model h1 (rotate by C4 for model h3 ). (b) models
h5,6 with magnetic field (Zeeman term Hz) in the z-direction. Red
lines represent surface states for kx,y = 0 cuts. Green lines repre-
sent flat-band hinge states; green crosses represent dispersing hinge
nodes. (c) The unit cell convention used to convert between spinless
and spinfull version of HOTI and HOTSM.

states protected by a combination of C4 and mirror symmetry.
The hinge states are only present when the surfaces are gapped
by a Zeeman term (Fig. 1 (b)), and are localized at only two of
the four hinges (see Refs. 22 and 24 for insulating examples
of states localized on two corners). Furthermore, the pair of
corners (which are related by C2 symmetry) that exhibit the
1D non-chiral states is controlled by the sign of the Zeeman
term.

We start by considering a model for a topological quadrupo-
lar semimetal constructed from layers of 2D quadrupolar
topological insulators [25]. Schematically, the unit cell for
the tight binding model for the 2D quadrupolar insulator layer
is illustrated in Fig. 1 (c). For each cell we have two or-
bitals (c, d) and a spin-1/2 degree of freedom, represented by
the four black dots in Fig. 1 (c). Let γi (i = x, y) be the
intra-cell hopping amplitudes, red lines in Fig. 1 (c), and λi
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the inter-cell hopping, blue lines in Fig. 1 (c). Hopping pro-
cesses represented by dotted lines have a phase that is oppo-
site to the one of the hopping processes represented by solid
lines. Depending on the choice of interlayer tunneling terms
between quadrupole layers we obtain different Hamiltonians,
H , for the resulting 3D system. In a momentum space basis
we have HSM =

∑
k ψ
†
khSM(k)ψk, where ψTk is the spinor

(ck↑, dk↑, dk↓, ck↓), formed by the annihilation operators ckα,
dkα, for an electron in orbital c, d, with spin α and momentum
k, and hSM is a 4×4 Bloch Hamiltonian matrix of the general
form:

hSM(k) = (γx + χx(kz) + λx cos(kx))Γ4 + λx sin(kx)Γ3

+(γy + χy(kz) + λy cos(ky))Γ2 + λy sin(ky)Γ1.
(1)

In Eq. (1) all the lattice constants are taken to be 1, χi(kz)
(i = x, y) are periodic functions of kz with forms fixed by the
interlayer tunneling terms, {Γα} are the 4× 4 matrices given
by the direct product of 2 × 2 Pauli matrices σi, κi in spin
and orbital space, respectively: Γ0 = σ3κ0, Γi = −σ2κi,
Γ4 = σ1κ0. In the remainder we assume χi(kz), γi, λi to
be independent of the in-plane direction (x or y) such that the
normal state topological quadrupolar semimetal has C4 sym-
metry. To be explicit we will set λi = λ and use it as our
unit of energy with λ = 1. We then set χi(kz) = cos(kz)/2,
and γi = γ = −3/4. With this choice of parametrization,
hSM(k) has fixed kz “momentum slices” with a non-vanishing
quantized quadrupole moment for cos(kz) < −1/2, and van-
ishing quadrupole for cos(kz) > −1/2. As a consequence,
the bulk bands are semimetallic with four-fold degenerate
nodes at the locations k(c)z where the quadrupole changes, i.e.,
cos(k

(c)
z ) = −1/2 [25].

Model Λi Mx My C4 Structure HOTSC
hSC,1 σ1κ2 τ3mx τ3my - intra-S X
hSC,2 σ2κ1 τ0mx τ3my - intra-S X
hSC,3 σ2κ0 τ3mx τ3my - inter-S X
hSC,4 σ2κ3 τ3mx τ0my - inter-T X
hSC,5 σ0κ2 τ3mx τ3my τ0r̂4 inter-S – (X∗)
hSC,6 σ3κ2 τ0mx τ0my τ3r̂4 intra-T – (X∗)

TABLE I. The pairings for the six different models discussed in
this work. Columns 2-4 show the representation of the pairing
term and of the symmetry operators for each model. mx = σ1κ3,
my = σ1κ1, r̂4 = i

2
(σ1+iσ2)κ2+

1
2
(σ1−iσ2)κ0. Column 6 shows

the pairing structure: inter/intra and S/T are short for inter/intra or-
bital and spin singlet/triplet, respectively. Column 7 shows whether
the model is a HOTSC: models with ”∗” in the parenthesis denotes
existence of HOTSC in the presence of magnetic field.

The most general mean-field Hamiltonian describing a
superconducting state for our system is given by HSC =∑

k Ψ†khSC(k)Ψk where ΨT
k =

(
ψk, ψ

†
−k
)

is the spinor
in Nambu space and hSC(k) = τ3(hSM (k) − µ) +

∆
(ij)
0 (k)τ2σiκj , where µ is the chemical potential, ∆

(ij)
0 (k)

the superconducting pairing strength in the (ij) spin orbital
channel, and {τi} are the Pauli matrices in Nambu space.
Restricting the superconducting pairing to be s-wave, i.e.,
∆

(ij)
0 (k) = const = ∆0, we obtain

hSC,i = τ3(hSM(k)− µ)−∆0τ2Λi (2)

where Λi is a 4× 4 matrix, independent of k, that determines
the structure of the superconducting pairing in orbital and spin
space. The requirement that the pairing term satisfies Fermi-
Dirac statistics implies that there are only six possible pairing
matrices Λi, listed in the second column of Table I, (see e.g.,
[26]). As a consequence, starting from hSM, we can obtain six
distinct s-wave superconducting states.

The normal state already has broken time-reversal symme-
try (T 2 = −1), when the superconducting pairing is added
these superconductors belong to symmetry class D [2]. We
note that, as written, our model has a fine-tuned chiral sym-
metry but its presence is not required for our results. All the
models have mirror symmetries in Mx, My, and Mz, and
therefore overall inversion symmetry I = MxMyMz. The
representation matrices for the Mx and My mirror symme-
tries are shown in Table I, and the matrix forMz is the iden-
tity matrix. Models hSC,5 hSC,6, retain C4 symmetry in the
superconducting state with representation matrices given in
Table I.

We can analyze the bulk quasi-particle spectra by consid-
ering the effects of ∆0 perturbatively on the normal state
semimetal by using a continuum k · p expansion around the
nodes at the two k(c)z . The 16× 16 continuum Hamiltonian is

Hk·p,i = −τ3π0σ2(vkxκ3 + vkyκ1) + vzkz(τ3π3σ2κ2

− τ3π3σ1κ0)− µτ3π0σ0κ0 −∆0τ2π1Λi (3)

where πi are Pauli matrices in the valley/node degree of free-
dom, and v, vz are velocities (~ = 1). In the nodal limit
µ → 0, one can determine the nature of the bulk spectra
by calculating how the pairing term commutes/anti-commutes
with the kinetic terms. However, we are interested in the
weak pairing limit, ∆0 < µ. To understand this limit, we
choose µ = 1,∆0 = 0.5. For this choice we find that mod-
els hSC,1, hSC,3, hSC,6 are fully gapped in the bulk by the
pairing term while hSC,2, hSC,4, hSC,5 are gapless. Model
hSC,2 (hSC,4) has gapless, bulk quasi-particle states forming
a nodal line/loop in kx−kz (ky−kz) plane, and model h5 has
4 nodes in the kx−ky plane at kz values away from any high-
symmetry points. We see that models hSC,1 and hSC,3 have
the same symmetry, the same representation forMx andMy ,
and have the same bulk spectra. Thus, they will have the same
essential properties for our study, and henceforth we only con-
sider hSC,1. Additionally, models hSC,2 and hSC,4 are related
by a unitary transformation and a C4 rotation around the z-
axis so we will only consider hSC,2 from now on. While we
have focused on particular values of µ and ∆0, the results do
not change qualitatively as long as ∆0 < µ, as is appropriate
for the weak-pairing limit.
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FIG. 2. The surface states of hSC,1 in (a) kx − kz and (b) ky −
kzplanes. (c) shows the Majorana hinges arc states in kz direction;
the color bar denotes the strength of the localization of the wave func-
tion at the corners. (d) depicts the Px, Py , Qc and qxy versus kz .
Color bars in (c) and the remaining hinge spectra in this article indi-
cate localization of the states at hinge. The colors approaching 1 are
the most localized.

We start by considering model hSC,1. The pairing breaks
C4 symmetry, while retaining mirror symmetries, so the bulk
nodes can be avoided and completely gapped[6] (see supple-
mentary material (SM) [27] for more detail). However, we
find that the surfaces Sy,±, perpendicular to the y-axis, exhibit
two gapless nodes per surface, as Fig. 2 (a), whereas the ones
perpendicular to the x-axis, Sx,±, are completely gapped, as
Fig. 2 (b). We then obtain the bands for the hinges and find, as
shown in Fig. 2 (c), that dispersionless hinge Majorana states
are present at the four corners of the xy-plane for values of
kz between the two gapless nodes on the Sy surface. These
states are reminiscent of the flat bands that appear between
the nodes, and at the edges, of a 2D Dirac semimetal.

The structure of the spectrum and symmetry is similar to
the one of path 2 quadrupolar semimetal in Ref. 25 and sug-
gests that the presence of the boundary states, the hinge states
in particular, might be due to a second-order topological in-
variant. To confirm it, we perform a superconducting analog
of the nested Wilson loop calculation of the quadrupole mo-
ment qxy(kz) for each kz slice. To identify a quadrupole-like
invariant for this superconducting system we separately eval-
uate the nested Berry phases Px(kz), Py(kz) in the x and y
directions [6] (in units of 2π), and the corner charge Qc(kz),
which takes values 0, 1/2, to indicate the absence or pres-
ence of hinge states, all as a function of kz. These are all
effectively Z2 quantities, and a superconducting analog of
the quadrupole invariant can be constructed using the relation
qxy(kz) ≡ (Px(kz) + Py(kz) − Qc(kz)) mod 1. Fig. 2 (d)
shows that Px(kz), Py(kz) are quantized, and they take the
non-trivial value for kz in the interval between the two gap-
less nodes of the surfaces states on Sy , the same range of kz
for which we have hinge states. As a consequence we find
that for values of kz between the two surface nodes, qxy(kz)

is also non-trivial and therefore that the hinge states in model
hSC,1 are topologically protected in the presence of mirror
symmetry and can be captured by a second-order, quadrupole-
like, topological invariant. Interestingly, we find that the pres-
ence of the gapless nodes on the surface, and of the hinge
states, is not affected by perturbations that break both mirror
symmetries, and thus the hinge states are perturbatively sta-
ble when the BdG particle-hole symmetry is maintained even
when the mirror symmetry is broken. The mirror symmetry is
advantageous because it allows for a definitive calculation of
the second-order invariant through nested Wilson loops, but
it is not necessary. Due to the presence of Dirac nodes in
the band structure of the surface states, and finite value of
the quadrupole-like invariant we term superconductors like
the one described by model hSC,1 (and hSC,13) second order
Dirac superconductors. This is one of the main results of this
work.

FIG. 3. The surface states of hSC,2 in (a) kx − kz and (b) ky −
kzplanes. (c) shows the Majorana hinges arc states in kz direction.

Now consider model hSC,2. The bulk states have nodal
loops, (see SM [27]), and the surface states are gapless, as
shown in Figs. 3 (a), (b). While we do find a small region
of localized hinges states in the middle of the spectrum (see
Fig. 3 (c)), the gapless bulk and surface states obscure them. It
would be difficult to spectroscopically isolate the hinge modes
of this model for any practical or experimental purpose. The
same is true of model hSC,4. Thus, while there may be some
interesting features of the gapless bulk and surface states of
these models left to explore, we leave the study of these model
for future works given that in this work our primary interest is
in hinge-mode phenomenology.

Models hSC,5 and hSC,6 differ from the previous models
in that, in addition to the mirror symmetries Mx and My ,
they retain C4 symmetry in the superconducting state. As
mentioned, model hSC,5 has nodal points in the bulk quasi-
particle spectrum, while hSC,6 is fully gapped in the bulk (see
SM [27]). We find that both models have gapless surface
states but of different nature. Due to the C4 symmetry, we
only show the results for the surface states Sy,±. The surface
bands of model hSC,5 exhibit two nodal loops, see Fig. 4 (a),
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FIG. 4. Model hSC,5: Surface states (a) in kx − kz plane, and hinge
states (b) along kz , when Jz = 0, (c) and (d), same as (a) and (b),
respectively, for the case when Jz = 0.6.

FIG. 5. Model hSC,6: Surface states (a) in kx − kz plane, and hinge
states (b) along kz , when Jz = 0, (c) and (d), same as (a) and (b),
respectively, for the case when Jz = 0.6.

whereas the surface bands of model hSC,6 exhibit a nodal line
at kx = 0 for the Sy surface states (ky = 0 for the Sx sur-
face states), Fig. 5 (a). Figure 4 (b) and Fig. 5 (b) show the
bands for the hinges for models hSC,5 and hSC,6 and we see
that there are no interesting localized hinge modes present.

FIG. 6. Quasi-particle density of the corner states for model hSC,6

in the presence of Zeeman term (a) Jz = 0.4 at kz = π/2, (b)
Jz = −0.4 at kz = π/2 and (c) Jz = 0.4 plus C4Mx breaking
perturbation (τ3r4mx) with strength of 0.1 at kz = 0.2π. Due to
degeneracy, only some of the colors are visible and they overlap the
other.

However, an external magneti field can perturb these sys-

tems to generate hinge modes. Let us apply a uniform mag-
netic field, or proximity-couple to a ferromagnet, to generate
a Zeeman term Hz = Jzτ3σ3κ0, where Jz is directly pro-
portional to the magnitude of the external magnetic field (we
ignore any orbital effects of the magnetic field). This term
qualitatively modifies the band structures of hSC,5 and hSC,6.
From Figs. 4 (c), 5 (c) we see that the presence of the Zeeman
term gaps out the the surface states completely (it also gaps
out the bulk nodes of hSC,5). Furthermore, we see the appear-
ance of clear hinge states within the gap of the surface states,
as shown in Fig. 4 (d) and Fig. 5 (d). Hz breaks C4 symmetry
and both mirror symmetries, but leaves the products C4Mx

(anti-diagonal mirror) and C4My (diagonal mirror) intact.
Because of these symmetries, and contrary to the hinge states
of the other models discussed in this work, the hinge states
of hSC,5 and hSC,6 (with Zeeman) are: dispersive, non-chiral,
and localized only at two of the four hinges related by C2

symmetry. In addition, we find that the pair of corners where
the helical hinge states are localized switches upon a change
of sign of the Zeeman term (e.g., switching the direction of
the external magnetic field), see Fig. 6. This phenomenon
could be useful for the experimental detection of these sys-
tems. For Jz > 0 (Jz < 0) there are two, counter-propagating
modes at two of the four corners, and they are ± eigenstates
of C4My (C4Mx). The hinge modes are perturbatively sta-
ble even in the absence of the two C4Mi symmetries as long
as particle-hole symmetry is preserved. However, the modes
can be destroyed through bulk or surface phase transitions.
When strongly perturbting the system one can drive the sys-
tem to various interesting configurations by breaking some of
the symmetries. As an example, for Jz > 0 (Jz < 0) if we
break C4Mx (C4My), then the exchange symmetry between
the two gapless hinges is broken. Strong perturbations can
destroy the hinge states on one of the corners leaving a single
pair of counter propagating modes on one of the corners left
invariant under C4My (C4Mx) (see Fig. 6 (c)).

In summary, in the presence of a Zeeman term, models
hSC,5 and hSC,6 describe three-dimensional, magnetic field-
induced second-order topological superconductors that are
qualitatively different from the ones described by models
hSC,1, hSC,3. They host hinge states only on two corners, and
the pair of corners exhibiting the hinge states can be switched
by a sign change of the Zeeman term. This is another main
result of this work. We note that magnetic fields were also
proposed to induce second-order topological superconductiv-
ity in a completely different system with different properties
in two dimensions [28].

In conclusion, we have identified two types of second-order
topological superconductors. The first type is a second order
Dirac superconductor in which the presence of non-dispersive
hinge states coexists with the gapless surface states. These su-
perconductors can be described by a quadrupole-like, second
order topological invariant. The second-type of higher-order
superconductor is induced by a Zeeman term and manifests
counter-propagating hinge modes on a single pair of corners.
All of these superconducting states are generated in the weak-



5

pairing limit as s-wave superconducting pairing instabilities
of a topological quadrupolar semimetal with a spin and an
orbital degree of freedom. Possible interesting future research
directions would be the study of the transport properties, and
stability, of the surface and hinge states of the higher orders
SC that we have identified in the presence of disorder and
interactions It would be particularly interesting to compare
these effects to the various anomalous transport properties,
including phase-sensitive effects, that characterize the surface
states of conventional topological superconductors [2, 29–36].
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