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We study the Kondo effect in three-dimensional (3D) Dirac materials and Weyl semimetals. We
find the scaling of the Kondo temperature with respect to the doping n and the coupling J between
the moment of the magnetic impurity and the carriers of the semimetal. We find that when the
temperature is much smaller than the Kondo temperature the resistivity due to the Kondo effect
scales as the n−4/3. We also study the effect of the interplay of long-range scalar disorder and Kondo
effect. In the presence of disorder-induced long-range carrier density inhomogeneities the Kondo
effect is not characterized by a Kondo temperature but by a distribution of Kondo temperatures.
We obtain the expression of such distribution and show that its features cause the appearance of
strong non-Fermi liquid behavior. Finally we compare the properties of the Kondo effect in 3D
Dirac materials and 2D Dirac systems like graphene and topological insulators.

PACS numbers: 65.80.Ck,72.20.Pa,72.80.Vp

Three-dimensional (3D) Dirac and Weyl semimet-
als (SMs) [1–4] have been recently realized experimen-
tally [5, 6], thus motivating a great deal of interest on
these materials. In Weyl and Dirac SMs [2–4, 7] the
conduction and valence bands touch at isolated points
of the Brillouin zone (BZ) named “Weyl nodes” (WNs)
in Weyl SMs and “Dirac points” (DPs) in Dirac SMs.
Around these points the electronic excitations behave as
3D massless Dirac fermions (MDFs) characterized, in the
isotropic case, by a density-independent Fermi velocity
vF. In the case of Weyl SMs the eigenstates of the bare
Hamiltonian are non-degenerate [1–4]. Weyl SMs are ex-
pected to exhibit unique properties [8–10] and to have
surface states forming “Fermi arcs” [2, 3, 11–18]. Con-
versely, in Dirac SMs the eigenstates are doubly degen-
erate, i.e. each Dirac point corresponds to two copies of
overlapping Weyl nodes with opposite chiralities [19] and
is protected by the symmetries of the crystal structure.
The linear dispersion around the nodes is expected to give
rise to anomalous transport properties in both 3D Dirac
and Weyl SMs [3, 20]. Graphene [21–23] and the surface
states of 3D topological insulators (TIs) [24, 25] consti-
tute the two-dimensional (2D) counterpart of 3D Dirac
SMs [24, 25]. While the surface states of TIs are not
spin degenerate, and are topologically protected by the
large separation in real space, the Dirac cones of graphene
are doubly degenerate and are protected by the inversion
symmetry of the crystal.

The interaction of dilute magnetic impurities with an
electron liquid is one of the most important and stud-
ied examples of strongly-correlated physics [26]. The so-
called “Kondo effect” [27] is characterized by a tempera-
ture scale TK. When the temperature (T ) is larger than
TK the electrons of the host material are only weakly scat-
tered by the impurity. For T < TK the coupling grows
non-perturbatively and leads to the formation of a many-

body singlet with the electron liquid, which completely
screens the impurity magnetic moment.

In this work we show that the unique band structure
of 3D Dirac and Weyl SMs strongly affects the nature
of the Kondo effect in these systems. We obtain (i) the
dependence of TK on the doping level of the SM and on
the strength of the antiferromagnetic electron-impurity
coupling J , (ii) the correction to the resistivity due to
the presence of magnetic impurities in the Kondo regime
(T → 0), and find that the interplay of linear dispersion
around the nodes, Kondo effect, and long-range scalar
disorder induces a non-Fermi liquid (NFL) behavior [28–
31] in these systems which can be directly probed by mea-
suring the magnetic response of these materials. Finally
we present a systematic comparison of the properties of
the Kondo effect between 3D and 2D Dirac SMs [32–45].

In Dirac and Weyl SMs the low-energy states around
one of the DPs are described by the Hamiltonian H0 =
�vF ĉ†kσ(k ·τσσ� −µ)ĉkσ� where vF is the Fermi velocity at

the DP, ĉ†kσ (ĉkσ) creates (annihilates) an electron with
momentum k and spin (or pseudospin) σ, and µ is the
chemical potential. Hereafter we set � = 1. For TIs and
Weyl SMs τσσ� is the vector formed by the 2 × 2 Pauli
matrices in spin space. For graphene and 3D Dirac SMs
τσσ� is the vector formed by the 2 × 2 Pauli matrices in
pseudospin space. It is easy to see that the contribution
of Fermi arcs to the Kondo effect in Weyl SMs is negli-
gible. Electrons on the Fermi arcs have the spin locked
to the momentum. Spin-flip processes can occur only if
electrons are scattered to another surface, but these pro-
cesses are extremely rare. Thus the differences between
Weyl and Dirac SMs, besides the extra spin degeneracy
gs = 2 of Dirac eigenstates, turn out to be inessential for
our purposes.

In the presence of diluted (identical) magnetic impu-
rities, coupled antiferromagnetically to the carriers, the
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system is described by the Hamiltonian H = H0 + HJ

where HJ = J
�

r,R ĉ
†
rστσσ� ĉrσ� ·Sδ(r−R), with S the

magnetic moments of impurities and {R} their positions.
Here ĉrσ (ĉ†rσ) is the Fourier transform of the operator
ĉkσ (ĉ†kσ) in the real-space domain. Since impurities in-
teract only with the electrons of the SM, hereafter we
focus on a single magnetic impurity.

To treat the coupling of the magnetic impurity to the
free carriers we use a large-N expansion [46, 47] in which
S is expressed in terms of auxiliary creation (annihila-
tion) fermionic operators f̂†

σ (f̂σ) satisfying the constraint
nf =

�
σ f̂

†
σ f̂σ = 1, with σ = 1, . . . , Nσ. We set Nσ = 2

in the end of the calculation, which corresponds to the
case of a magnetic impurity with |S| = 1/2. In terms
of the f̂ -operators the coupling term HJ takes the form
HJ = J

�
k,k�,σ ĉ

†
kσ ĉk�σ� f̂

†
σ� f̂σ.

The large-N expansion allows a mean field treatment of
the Kondo problem [46], and is known to return accurate
and reliable results for the case of diluted magnetic impu-
rities [46–48]. We decouple the quartic interaction term
HJ via a Hubbard-Stratonovich field s ∼

�
k,σ�f̂†

σ ĉkσ�,
which thus describes the hybridization between “local-
ized” (f̂) and “itinerant” (ĉ) electronic states. The con-
strain nf = 1 is enforced with the introduction of the La-
grange multiplier µf , which plays the role of the chemical
potential of the f -electrons [see also Eq. (5)]. The result-
ing action is quadratic in the fermionic fields, and the
functional integration over f̂ and ĉ can be carried out
analytically. Approximating s and µf as static (mean-
)fields, we finally obtain the effective action

Seff=
2

πkBT

� D−µ

−D−µ
dε nF(ε) arctan

�
π

2

|s|2N (ε+ µ)

ε− µf

�

+
1

kBT

�
|s|2

J
− µf

�
, (1)

where nF(ε) = (eε/(kBT ) + 1)−1 is the Fermi-Dirac occu-
pation factor and N (ε) = V Nwε

2
/(2π2�3v3F) is the 3D

density-of-states (DOS) of electrons in the SM. Here Nw

the number of DPs, V is the volume of the system and
D is a cut-off corresponding to half the bandwidth of
the SM. The corresponding effective action for the 2D
case is obtained by replacing N (ε) → V Nw|ε|/(2π�2v2F).
By minimizing Seff within the saddle point approxima-
tion [47] we obtain the self-consistent equations for |s|2
and µf .

� D−µ

−D−µ
dε

nF(ε)(ε− µf )N (ε+ µ)

(ε− µf )2 + (π|s|2N (ε+ µ)/2)2
= − 1

J
,

� D−µ

−D−µ
dε

nF(ε)|s|2N (ε+ µ)

(ε− µf )2 + (π|s|2N (ε+ µ)/2)2
= 1 , (2)

We identify TK as the highest temperature for which
Eqs. (2) have a non-trivial solution. Depending on the
value of µ we can have two distinct situations. For µ = 0,
i.e. when the chemical potential of the 3D SM lies exactly

FIG. 1. (Color online) Panel a) the Kondo temperature of a
3D Weyl/Dirac material in units of half the bandwidth, plot
as a function of the DOS at the bottom of the band N (D)
and for several value of the chemical potential µ. Panel b)
same as in panel a) but for a 2D system.

at the DP, the first of Eq. (2) in the limit µf , |s|2 → 0
gives

TK = D

√
3

π

�

1− 2

N (D)J
, µ = 0 . (3)

Eq. (3) is valid only for J larger than the critical value
Jcr = 2/N (D), and TK vanishes when this condition is
not met. This threshold-like behavior is well-known to
occur [32, 33, 36, 37, 43, 49] when the DOS vanishes for
ε → 0. A similar situation is realized in 2D for which one
obtains TK = D

�
1 − 1/(N (D)J)

�
/ ln(4) [32, 33, 37, 43,

50].
When µ �= 0, in the limit kBTK � µ � D and J � Jc

we obtain

TK = D exp

�
1− 2/(JN (D))

2µ2/D2

�
, µ �= 0 . (4)

For J � Jc is not possible to get a compact analytic
expression for TK. In 2D [39] and for J � Jcr we have in-
stead TK = κ(µ)e[1−1/(N (D)J)]/|µ/D|, where κ(µ) = µ

2
/D

[κ(µ) = D] for µ > 0 [µ < 0]. Fig. 1 shows the Kondo
temperature TK of 3D and 2D SMs as a function of J
(both smaller and larger that Jc) and for different val-
ues of µ > 0, as derived from the solution of the self-
consistent Eqs. (2).
The coupling term HJ induces a renormalization of the

Green’s function of the SM electrons. Let

G
(f)
σσ�(iωm) = δσσ�

�
iωm − µf − |s|2

�

k,j

G
(0,j)
σσ (k, iωm)

�−1

(5)
be the Green’s function of the f -electrons, with

G
(0,j)
σσ� (k, iωm) the Green’s function of electrons of the

SM in the clean limit, and ωn = πT (2n+1) the fermionic
Matsubara frequencies. In Eq. (5) the sum is extended to
all the wavevectors k with |k| < D/(�vF), and to all the
DPs j = 1, . . . , Nw in the Brillouin zone. Note that only

the diagonal part of G(0,j)
σσ� (k, iωm) survives the summa-

tion, and that µf plays the role of the chemical potential
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of the f -electrons. The renormalized Green’s function of
the itinerant electrons is given by

G
(j)
σσ�(k, iωm) = G

(0,j)
σσ� (k, iωm)

+ |s|2
�

σ��

G
(0,j)
σσ�� (k, iωm)G(f)

σ��σ��(iωm)G(0,j)
σ��σ�(k, iωm) .

(6)

From this expression it is immediate to find the relax-
ation time τ(ε) of the electrons in the SM. We recall
that 1/τ(ε) is proportional to the imaginary part of the
T -matrix which, as shown in Eq. (6), is proportional to

Im[G(f)
σσ (ε+iη)]. We get 1/τ(ε) = −2nimp|s|2Im[G(f)

σσ (ε+
iη)] = 4nimp/

�
πN (ε + µ)

�
. It is interesting to point out

that τ(ε) does not depend on the hybridization |s|2. In-
deed the factor |s|2, due to the interaction vertices be-
tween electrons and impurity states, is canceled by an
opposite factor ∼ 1/|s|2 due to the peak of Im[G(f)(ω)] at
the Fermi energy. Essentially, even though the electron-
impurity coupling becomes stronger by increasing s, its
effect is compensated by the reduced spectral weight of
impurity states at the Fermi energy. Using Boltzmann-
transport theory and the expression of τ(ε), we can es-
timate the zero-temperature Kondo resistivity (restoring
�)

ρK(T = 0) =
h

e2

�
32gs

3π2N2
w

�1/3
nimp

n4/3
. (7)

It is interesting to compare the scalings of ρK and of
the electrical resistivity ρ (due to non-magnetic disor-
der) with the density. We recall that in the case of scalar
short-range impurities [3] ρ is independent of n. The scal-
ing of ρK given in Eq. (7) coincides with that of ρ when
the latter is caused by charged impurities [3]. This is not
a coincidence, since τ(0) scales with the DOS, the charge

transport time is proportional to
�
N (µ)u2(0)

�−1
, and the

screened Coulomb potential u(q) of impurities scales with
the inverse of the DOS. The same happens also in the 2D
case, for which the zero-temperature Kondo resistivity
is [38] ρK = (h/e2)[4nimp/(πNw)]n−1.

So far we have considered the effect of magnetic impuri-
ties in a clean SM. However, some amount of charged im-
purities is always present in any experimental sample. In
Dirac SMs, differently from “standard” metals, charged
impurities induce [51–53] long-range carrier density in-
homogeneities [54, 55]. Such inhomogeneities have been
observed in direct imaging experiments in graphene [56–
58] and TIs [24, 59, 60]. Since the DOS of 3D Dirac SMs
scales with the density as ∼ n

2/3, the long-range fluc-
tuations of the carrier density reflect on the DOS and,
as it is shown by Eq. (4), on the Kondo temperature TK.
The Kondo effect is not characterized anymore by a single
value of TK, but by a distribution of Kondo temperatures
P (TK) [44]. A similar situation was predicted to occur in
metals close to a metal-insulator transition (MIT) [28].

To study the interplay of Kondo screening and long-
range disorder we consider a Gaussian density distribu-
tion Pn(n) centered around the average doping n̄, with
standard deviation σn (proportional to the number of
dopants), i.e. Pn(n) = exp

�
− (n− n̄)2/(2σ2

n)
�
/(
√
2πσn).

This assumption for Pn(n) has been shown to be well jus-
tified for the case of 2D graphene [61–63] and we expect
it to be a reasonable model also for 3D SMs. Using this
expression for Pn(n) and the fact that µ ∼ n

1/3, from
Eq. (4) we obtain

P
(3D)(TK) =

3D3

8
√
πσ3

µTK

� �
1− Jc/J

�3

ln5(kBTK/D)

�1/2

×
�
e
− (µ3−µ̄3)2

2σ6
µ + e

− (µ3+µ̄3)2

2σ6
µ

�
, (8)

where µ̄ = vF(6π2
n̄/Nw)1/3, σµ = vF(6π2

σn/Nw)1/3, and
µ ≡ µ(T ) is obtained by inverting Eq. (4).
We recall that in 2D |µ| ∼ n

1/2. The major compli-
cation in this case is due to the asymmetric prefactor
κ(µ) of the exponential in the expression of TK [see dis-
cussion after Eq. (4)], which we approximate with the
half-bandwidth D. In this way we obtain a lower bound
for the distribution of Kondo temperature P (2D)(TK). In-
verting the expression for the Kondo temperature we get
µ2D(T ) ∼ D(1 − Jc/J)/ ln(kBT/D) and, in the limit of
TK → 0,

P
(2D)(TK) =

√
2D2

√
πσ2

µTK

(1− Jc/J)2

| ln3(kBTK/D)|

×
�
e
− (µ2−µ̄2)2

2σ4
µ + e

− (µ2+µ̄2)2

2σ4
µ

�
, (9)

where in this expression µ ≡ µ2D(T ).
Eqs. (8) and (9) show explicitly that the distribution

of Kondo temperatures behaves, in the limit TK → 0, as

P
(3D)(TK) ∝ T

−1
K | ln(TK)|−5/2

e
−µ̄6/(2σ6

µ) ,

P
(2D)(TK) ∝ T

−1
K | ln(TK)|−3

e
−µ̄4/(2σ4

µ) . (10)

Thus, in the presence of long-range disorder there is al-
ways a large fraction of the sample whose Kondo tem-
perature is extremely small. As a consequence at any
finite temperature a significant fraction of carriers is not
“bound” to the magnetic impurities. From Eqs. (9)
and (8) we determine the number of free spins as nfr(T ) =� T
0 dTKP (TK) and in the limit of T → 0 we find

nfr(T ) ∝ | ln(T )|−3/2
e
−n̄2/(2σ2

n) in 3D ,

nfr(T ) ∝ | ln(T )|−2
e
−n̄2/(2σ2

n) in 2D . (11)

Eqs. (8)-(11) are the central results of this work. Plots
of the distribution of Kondo temperatures in 3D and 2D
SMs are shown in Fig. 2.
Note that the number of free spins diverges logarith-

mically as T → 0, and so does the magnetic suscepti-
bility χm(T ) ∝ nfr(T )/T . At odds with the magnetic
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FIG. 2. (Color online) Panel a) the distribution of Kondo
temperatures of a 3D Weyl/Dirac material plot as a function
of the temperature in units of half the bandwidth and for
several value of the excess carrier density. In this plot we set
σn = 1018 cm−3, vF = 108 cm/s, J = 0.6 Jc, Nw = 2 and a
half-bandwidth D = 0.5 eV. Panel b) same as in panel a) but
for a 2D system. Here σn = 1012 cm−2, while all the other
parameters coincide with those of panel a).

susceptibility of a normal Fermi liquid, χm(T ) diverges
slower than ∼ 1/T (Curie-Weiss law) and does not con-
verge to any finite value at zero temperature [64]. This
is a clear signature of the development of a NFL be-
havior. We observe that in Dirac SMs the divergence
of χm(T ) is stronger than what was found for metals
close to a MIT [28]. Note also that both the distribution
P (TK) and the number of free spins contain the factor
exp

�
− n̄

2
/(2σ2

n)
�
, which encodes the effects of both dop-

ing and disorder. If the system is strongly doped (i.e.
if n̄ � σn), the exponential factor strongly suppresses
the NFL behavior. The density fluctuations are indeed
too small and the Kondo effect is completely controlled
by the average Kondo temperature �TK�. In this situ-
ation, the spin susceptibility diverges only at extremely
small temperatures. On the contrary, when the density
fluctuations are strong, i.e. when n̄ � σn, the expo-
nential factor is of order of the unity, and the number
of free spins can be quite large. We find that the num-
ber of free spins is nfr ∼ 22 % at T = 30 K in a 3D
doped Dirac SM (n̄ = 1016 cm−3) with density fluctua-
tions σn = 1018 cm−3. To obtain this estimate we used
a Fermi velocity vF = 108 cm/s, J = 0.6 Jc, Nw = 2 and
a bandwidth D = 0.5 eV. The parameters have been
chosen to have kBT � µ � D.

In conclusion, we have studied the Kondo effect in
3D Dirac and Weyl semimetals. In the absence of long-
range, disorder-induced, carrier density inhomogeneities
the Kondo effect is characterized by the Kondo temper-
ature TK, the crossover temperature below which Kondo
screening takes effect. When the chemical potential µ is
pinned at the Dirac point we find that no Kondo effect
can take place unless the coupling J between magnetic
impurities and conduction electrons is larger than a crit-
ical value Jc = 2/N (D), in this case TK ∝

�
1− Jc/J .

The existence of a critical coupling is analogous to the
case of graphene and, in general, to the pseudogap Kondo

problem. For µ > 0, TK is different from zero for any
value of J and depends exponentially on µ and J . We
also find that in the low-temperature regime (T → 0)
the Kondo resistivity due to the presence of magnetic
impurities scales as ρK ∝ nimp/n

4/3.

In the presence of long-range disorder we find that the
Kondo effect is not characterized by a single crossover
temperature TK, but by a distribution of Kondo temper-
atures P (TK), as a result of the disorder-induced carrier
density inhomogeneities and the fact that, due to the lin-
ear dispersion, the density-of-states depends on the local
value of the carrier density. We find that, in the limit of
TK → 0, P (TK) ∝ T

−1
K | ln(TK)|−5/2, and that the number

of screened magnetic impurities goes to zero in the same
limit. This in turn implies that the magnetic suscepti-
bility diverges slower than ∼ 1/T for T → 0, and that it
does not converge to any finite value at zero temperature.
As was pointed out in Ref. [28], this is the signature of a
strong NFL behavior. We find a qualitatively similar be-
havior also in 2D. In this case P (TK) ∝ T

−1
K | ln(TK)|−3.

Transport measurements in graphene in the presence of
vacancies have already observed the signature of Kondo
effect [65]. It would be interesting to study in these sam-
ples the low-temperature behavior of quantities such as
the magnetic susceptibility to verify the existence of the
NFL behavior.
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