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We study the effect of long-range disorder created by charge impurities on the carrier density dis-
tribution of graphene-based heterostructures. We consider heterostructures formed by two graphenic
sheets (either single layer graphene, SLG, or bilayer graphene, BLG) separated by a dielectric film.
We present results for symmetric heterostructures, SLG-SLG and BLG-BLG, and hybrid ones,
BLG-SLG. As for isolated layers, we find that the presence of charged impurities induces strong
carrier density inhomogeneities, especially at low dopings where the density landscape breaks up
in electron-hole puddles. We provide quantitative results for the strength of the carrier density
inhomogeneities and for the screened disorder potential for a large range of experimentally relevant
conditions. For heterostructures in which BLG is present we also present results for the band-gap
induced by the perpendicular electric field generated self-consistently by the disorder potential and
by the distribution of charges in the heterostructure. For SLG-SLG heterostructures we discuss the
relevance of our results for the understanding of the recently observed metal-insulator transition
in each of the graphene layers forming the heterostructure. Moreover, we calculate the correlation
between the density profiles in the two graphenic layers and show that for standard experimental
conditions the two profiles are well correlated.

PACS numbers:

I. INTRODUCTION

The ability to realize single layer graphene (SLG)1, bi-
layer graphene (BLG)2, and other two-dimensional (2D)
crystals3, combined with recent advances in fabrication
techniques4,5, in recent years, has allowed the realiza-
tion of novel 2D heterostructures6–17. In these struc-
tures two, or more, 2D crystals are stacked in a designed
sequence. Layers of hexagonal boron nitride (hBN)18–20

have been used to separate electrically the graphenic lay-
ers (SLG or BLG) in multilayered 2D heterostructures.
In particular, hBN allows the realization of graphene-
based heterostructures in which the graphenic layers are
very close and yet electrically separated21,22, a situation
that is ideal to study the effects of interlayer interactions.
It has been proposed that in these type of systems the
interlayer interactions can drive the system into spon-
taneously broken symmetry ground states23–28. Experi-
ments, so far, have not observed clear signatures of the
establishment of these collective ground states. However,
recent measurements of the drag resistivity in graphene
double layers21 have shown that the drag resistivity has
a very large and anomalous peak when the doping in
both graphene sheets is set to zero. This phenomenon
indicates that a strong correlation is present between the
carriers in the two layers.

In most of the samples random charge impurities
are present in the graphene environment, either in the
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substrate, or trapped between the graphenic layer and
the substrate. It has been shown theoretically29 and
experimentally30–33 that the long-range disorder due to
charge impurities induces strong, long-range, carrier den-
sity inhomogeneities in isolated SLG and BLG. The pres-
ence of random carrier density inhomogeneities has been
predicted theoretically to strongly suppress the critical
temperature (Tc) for the formation of an interlayer phase
coherent state34,35 in graphene heterostructures. This
is in contrast to the short-range disorder that is not
expected to suppress significantly Tc

28,36,37. In addi-
tion, the presence of charge inhomogeneities, correlated
in the two layers, is a necessary ingredient of the energy-
transfer mechanism that has been proposed38,39 to ex-
plain the strong peak of the drag-resistivity at the double-
neutrality point. Disorder-induced carrier density inho-
mogeneities are also expected to strongly affect the trans-
port properties of graphene-based heterostructures40–45.
For these reasons, the accurate characterization of the
carrier density inhomogeneities induced by long-range
disorder in graphene-based heterostructures is essential
to understand the fundamental properties of these sys-
tems and to identify ways to increase their electronic
mobility.

The characterization of the effects of disorder in
graphene-based heterostructures is challenging for sev-
eral reasons: (i) In most samples the disorder appears
to be due predominantly by random charge impurities
and to be quite strong and long-range, this fact makes
the use of standard techniques, such as perturbation
theory, not viable; (ii) Due to the linear dispersion, in
graphene, the screening of the long-range disorder due
to the charge impurities is nonlinear; (iii) In graphene
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heterostructures the screening effects due to the different
layers must be taken into account self-consistently; (iv)
In bilayer graphene the presence of a perpendicular elec-
tric field opens a band-gap46,47; (v) In heterostructures
comprising BLG the component of the electric field per-
pendicular to BLG, and the BLG gap, must be obtained
self-consistently taking into account the presence of the
disorder and its screening by the metallic gates and the
other graphenic layer.

In this work we present a systematic study of the effects
of the long-range disorder due to random charge impuri-
ties on the ground state of graphene-based heterostruc-
tures taking into account all the effects mentioned above.
As shown in Fig. 1 we consider heterostructures formed
by two “graphenic” layers, either SLG or BLG, sepa-
rated by a thin dielectric film. In the assumed con-
figuration, using a top and a bottom gate, the doping
of each graphenic layer can be set independently. We
considered three classes of heterostructures: (i) double
layer graphene (SLG-SLG) formed by two sheets of single
layer graphene; (ii) double bilayer graphene (BLG-BLG)
formed by two sheets of bilayer graphene; (iii) “hybrid
structures” (BLG-SLG) formed by one sheet of BLG and
one sheet of SLG.

We find that the presence of charge impurities induces
strong and long-range carrier density inhomogeneities
in graphene-based heterostructures as in isolated SLG29

and BLG42. However, for typical experimental situations
we find that for the top graphenic layer the strength of
the carrier density inhomogeneities is strongly suppressed
due to the screening of the charge impurities by the bot-
tom layer. We quantify this effect for most of the exper-
imentally relevant conditions and find that for the top
layer the amplitude of the density fluctuations can be re-
duced by an order of magnitude, and that the effect is
strongest in BLG-SLG heterostructures. We also show
that the carrier density inhomogeneities in the different
graphenic layers are well correlated. Finally, we show
how the average band gap of BLG, and its root mean
square, depend on the parameters, such as the impurity
density, characterizing the heterostructure. Our results
present a comprehensive characterization of the carrier
density profile of graphene heterostructures in the pres-
ence of long-range disorder. By showing how the strength
of the carrier density inhomogeneities depend on the ex-
perimental parameters, our results show how the quality
of graphene-based heterostructures could be improved.
This information is essential for the study of fundamental
effects in these systems and for their use in technological
applications.

In section II we present our theoretical approach; in
section III we present the results and discuss their rel-
evance for current experiments; in section IV we dis-
cuss the relevance of our results for the recently ob-
served metal-insulator transition as a function of dop-
ing in double-layer graphene heterostructures. Finally in
section V we present our conclusions.

II. THEORETICAL APPROACH

Figure 1 presents a sketch of the type of graphene het-
erostructure that we consider. One graphenic layer (SLG
or BLG), layer 1 in our notation is placed on an insulat-
ing substrate, typically SiO2 . A thin buffer layer of
high quality dielectric, typically hBN, might be present
between the SiO2 and the graphenic layer. A second
graphenic layer, layer 2, is placed above the first one.
Layer 2 and layer 1 are electrically isolated via a thin
insulating film. The doping level of the two graphenic
layers can be tuned independently via a top and a bot-
tom gate.

There is compelling evidence44 that in systems of the
type depicted in Fig. 1 the dominant source of disorder is
constituted by random charge impurities located close to
the surface of SiO2 . The distribution of the charge impu-
rities can be modeled as an affective 2D distribution c(r)
placed at a distance d below the bottom graphenic layer
(layer 1). The dash-dot line in Fig. 1 shows schematically
the location of the effective 2D plane where the random
impurities are located. It is likely that some charge impu-
rities will also be trapped between each graphenic sheet
and the adjacent thin dielectric films. However, the ex-
perimental evidence, especially for setups in which hBN
is used as dielectric material, strongly suggests that the
density of such trapped impurities is at least an order
of magnitude smaller that the density of the impurities
close to the surface of the SiO2 . For this reason in
the remainder we assume that the disorder potential is
solely due to the charge impurities located close to the
SiO2’s surface. Without loss of generality, we can assume
〈c(r)〉 = 0, where the angle brackets denote average over
disorder realizations. Our formalism allows to easily take
into account the presence of spatial correlation between
the charge impurities48,49. However, given the fact that
in general the charge impurities are frozen and locked
in a configuration that results from the fabrication pro-
cess and that is not the thermodynamic equilibrium50,
we can assume that their position is uncorrelated so that
〈c(r)c(r′)〉 = nimpδ(r− r′), where nimp is the charge im-
purity density.

At low energies the fermionic excitations of SLG
are well described by a massless Dirac model with
Hamiltonian44,51:

H = ~vF σ · k , (1)

where ~k is the momentum operator, σ = (σx, σy) are
the Pauli matrices in sublattice space, and vF ≈ 106

ms−1 is the Fermi velocity. Recently experiments for
graphene on hBN have shown evidence of the opening of
a gap9,52. Considering that the fact that there is a 1.8%
lattice mismatch between graphene and hBN, and the
fact that in current experiments a twist angle between
the graphene layer and the hBN is normally present, the
mechanism by which the gaps open is still not completely
understood39,53, but is thought to be arising from the ex-
plicit breaking of the ’AB’ sub-lattice symmetry in SLG
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FIG. 1: Sketch of the typical graphene heterostructure con-
sidered in this work showing the graphenic layers (blue dashed
lines) connected to independent metal gates (gray solid lines),
isolated with hBN, and placed on a SiO2 substrate. The
charged impurities are modeled as a two-dimensional distri-
bution c(r) (red line) located at an effective distance d below
the bottom graphenic layer.

due to the presence of the h-BN substrate, and that it
should not depend on the local electric field, but should
depend on the twist angle between graphene and h-BN
in some complex manner. For our purposes this means
that for SLG on hBN the band-gap, if present, can be
assumed to be fixed and independent of the local dop-
ing and electric field created by the nearby gates. In the
presence of a band gap the low-energy Hamiltonian for
single layer graphene becomes:

H =

(
∆ ~vF (kx − iky)

~vF (kx + iky) −∆

)
. (2)

At low energies the effective Hamiltonian describing
the fermionic excitations in BLG is

H =

(
∆ ~2

2m∗ (kx − iky)2

~2

2m∗ (kx + iky)2 −∆

)
, (3)

where m∗ = 0.033me is the effective electron mass and ∆
is the band gap due a difference (U) in the electrochem-
ical potential between the two layers of carbon atoms
forming BLG.

In our case U in Eq. (3) is due to the presence of a per-
pendicular electric field E⊥ induced by the metal gates,
the other graphenic layer, and the charge impurities, sur-
rounding the BLG sheet. If BLG is layer 1, i.e. it is the
graphenic layer closest to the charge impurities, we have:

E
(1)
⊥ (r) =

e d

ε

∫
dr′

c(r′)

[|r− r′|2 + d2]3/2

− e d12

ε

∫
dr′

n2(r′)

[|r− r′|2 + d2
12]3/2

− e δ1
ε

∫
dr′

n1(r′)

[|r− r′|2 + δ2
1 ]3/2

,

where d12 is the distance between the two graphenic lay-
ers and δ1 ≈ 300nm is the distance between BLG and

the bottom gate, Fig. 1. Notice that in general E⊥ is
not uniform, mostly due to the presence of the charge
impurities. When BLG is layer 2 we have:

E
(2)
⊥ (r) = (d+ d12)

e

ε

∫
dr′

c(r′)

[|r− r′|2 + (d+ d12)2]3/2

(4)

+
e d12

ε

∫
dr′

n1(r′)

[|r− r′|2 + d2
12]3/2

(5)

+ (δ2 − d12)
e

ε

∫
dr′

n2(r′)

[|r− r′|2 + (δ2 − d12)2]3/2
,

(6)

where δ2 ≈ 150nm is the distance between the first
graphenic layer and the top metal gate, Fig. 1. Using
these expressions for the perpendicular component of the
electric field we can calculate U . We have

U (i)(r) = edmE
(i)
⊥ (r) , (7)

where i = 1 (i = 2) if BLG is the bottom (top) graphenic
layer, and dm = 0.335nm is the BLG interlayer separa-
tion. Taking into account screening effects54–56 the band
gap of BLG due to a finite value of U is given by the
equation

∆(x, y) =
γ1|U(x, y)|√
|U(x, y)|2 + γ2

1

, (8)

where γ1 = 0.34 eV is the BLG interlayer tunneling
amplitude51.

To obtain the ground state carrier density distribution
in the presence of charge impurities we use the Thomas
Fermi Dirac theory (TFDT). The TFDT is a generaliza-
tion of the Thomas-Fermi theory to include also cases in
which the electronic degrees of freedom behave as mass-
less Dirac fermions, as in single layer graphene. In this
case both the kinetic energy functional and the functional
due to the exchange part of the Coulomb interaction are
different from the ones valid for systems in which the
electrons behave as massive fermions29,57. In the TFDT
the ground state of the system is obtained by minimiz-
ing the energy functional, E[n], of the carrier density n.
The TFDT is similar in spirit to the density functional
theory (DFT), the difference being that in the TFDT
the kinetic energy is also approximated by a functional
of the density, EK [n], whereas in the DFT it is treated
via the full quantum-mechanical operator acting on the
wave function Ψ. The TFDT returns accurate results as
long as the length-scale of the carrier density inhomo-
geneities Ln ≡ |∇n/n|−1 is larger than the Fermi wave-
length λF . Prior results on SLG29,42 and BLG58,59 have
shown that in graphene-based systems this inequality is
satisfied for typical experimental conditions. The value
of n that enters in the inequality Ln � λF is the typ-
ical local value inside the “puddles” characterizing the
inhomogenous carrier density landscape. At the charge
neutrality point (CNP) 〈n〉 = 0, however, everywhere
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the local density n(r) is different from zero and therefore
locally λF has a finite value. As a consequence, close
to the CNP the average density cannot be taken as a
measure of the typical carrier density inside the puddles
and a better estimate is given by the density root mean
square n(rms). Given that n(rms) ≈ nimp

29,58 we have that
the TFDT is valid at all densities as long as nimp is not
too small (nimp > 1011cm−2)60. This is confirmed by
prior results on SLG29,42 and BLG58,59. The two ma-
jor advantages of the TFDT are: (i) Being a functional
theory is not perturbative with respect to the strength
of the density fluctuations and can therefore take into
account nonlinear screening effects; (ii) It is computa-
tionally very efficient and this makes the TFDT able to
return disorder-averaged results.
For the systems of interest, the TFDT energy func-
tional E[ni] will be a functional of the density pro-
files, {ni(r)}, in the two graphenic layers. Neglecting
exchange-correlation terms, that have been shown to be
small for most of the situation we are interested in29,58,
the general form of the functional E[ni] is:

E[ni] =
∑
i

EK [ni] +
∑
i

e2

2ε

∫
d2r

∫
d2r′

ni(r)ni(r
′)

|r− r′| +

+
∑
i,j 6=i

e2

2ε

∫
d2r

∫
d2r′

ni(r
′)nj(r)[

|r− r′|2 + d2
ij

]1/2

+ e
∑
i

∫
d2rV i

D(r)ni(r)−
∑
i

µi

∫
d2rni(r)

(9)

where ε is the dielectric constant of the medium sur-
rounding the graphenic layers, dij is the distance between
the graphenic layers, V i

D is the bare disorder potential in
layer i, and µi is the chemical potential in layer i. The
second term in Eq. (9) is the Hartree part of the intralayer
Coulomb interaction, the third term is the Hartree part
of the interlayer Coulomb interaction, and the fourth is
the one due to the disorder potential V i

D. Assuming that
charge impurities close to the surface of SiO2 are the
dominant source of disorder we have

V
(1)
D =

e

ε

∫
dr′

c(r′)

[|r− r′|2 + d2]1/2
; (10)

V
(2)
D =

e

ε

∫
dr′

c(r′)

[|r− r′|2 + (d+ d12)2]1/2
. (11)

The ground state is obtained by minimizing E with
respect to {ni}. This gives rise to two coupled equations.
In general, for the cases we are interested in, the term
µkin ≡ δEK/δni is nonlinear. For the case of gapless
SLG µkin scales as the square-root of the density:

µ
(SLG)
kin [n] = ~vf sgn(n(r))

√
π |n(r)|. (12)

For the case of gapped SLG we have

µ
(SLG)
kin [n,∆] = sgn(n(r))

√
~2v2

fπ |n(r)|+ ∆2 (13)

For BLG, neglecting the presence of a nonzero band-
gap (∆), µkin depends linearly on n. This fact allows us
to obtain analytical results for the carrier density ground
state of BLG-BLG heterostructures in the limit ∆ = 0
(see Sec. III). In the presence of a band gap the screening
is strongly non-linear and this is reflected by the nonlin-
ear dependence of µkin with respect to the density. Tak-
ing into account the band-gap for BLG we have

µ
(BLG)
kin [n] =

√(
~2

2m∗

)2

π2n2 + ∆2. (14)

The nonlinearities due to the term δEK/δni, and the
need to calculate self-consistently ∆ for systems involv-
ing BLG, imply that the solution of the TFDT equa-
tions can only be achieved numerically. We then solve
these equations for many (500-1000) disorder realizations
to obtain disorder-averaged results. The need to con-
sider many disorder realization to accurately obtain the
disorder-averaged values of the quantities characterizing
the ground state makes the computational efficiency of
the TFDT approach very valuable.

III. RESULTS
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FIG. 2: (Color online). Color plots showing (a) n1(r), (b)

n2(r), (c) V
(1)
sc (r), and (d) V

(2)
sc (r) for a SLG-SLG system at

the charge neutrality point for a single disorder realization
with nimp = 3× 1011cm−2, d = 1 nm, and d12 = 1 nm.

Figure 2 shows the profiles for a single disorder realiza-
tion of the carrier density and of the screened disorder po-
tential in each layer of a SLG-SLG heterostructure, at the
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neutrality point. We see that, as for the case of isolated
SLG and BLG29–33,44, the carrier density profile breaks
up in electron-hole puddles. We also notice that the am-
plitude of the density fluctuations and the strength of
the screened disorder potential in the top layer is much
smaller that in the bottom layer. This is due mostly to
the screening of the charge impurities by the layer, layer
1, closer to the impurities. When the spectrum of SLG
is gapped some regions of the samples will be insulat-
ing. This is shown by Fig. 3 that presents the density
and screened disorder profiles for a single disorder real-
ization for a SLG-SLG systems in which the band-gap
in graphene, in both layers, is set equal to 20 meV. The
white areas in Fig. 3 a), (b) are insulating regions, i.e.
regions in which the local chemical potential is within
the band-gap and therefore there are no carriers. The
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FIG. 3: (Color online). Color plots showing (a) n1(r), (b)

n2(r), (c) V
(1)
sc (r), and (d) V

(2)
sc (r) for a SLG-SLG system at

the charge neutrality point for a single disorder realization
with nimp = 3 × 1011cm−2, d = 1 nm, d12 = 1 nm, and a
finite band-gap ∆ = 20 meV in both layers.

results shown in Figs. 2,3 show how the profiles of the
density and disorder are different between the top layer
and the bottom layer are different. The asymmetry be-
tween the profiles in the two layers will be reflected also
in the transport properties as observed experimentally61.
In particular, for our configuration, in which the disorder
is dominated by the charge impurities at the surface of
the SiO2 , we see that, in the presence of a gap the in-
sulating regions are substantially larger in the top layer
than in the bottom layer. We discuss the effect of these
asymmetry on the qualitative features of electronic trans-
port in section IV.

Figure 4 shows the profiles for a single disorder real-
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FIG. 4: (Color online). Color plots showing (a) n1(r), (b)

n2(r), (c) V
(1)
sc (r), (d) V

(2)
sc (r) and (e) ∆(1) corresponding to

the BLG-SLG hybrid system at charge neutrality point for a
single disorder realization, nimp = 3 × 1011cm−2, d = 1 nm,
and d12 = 1 nm. (f) Sketch of the gapped BLG bands in the
presence of disorder.

ization of the carrier density, panels (a) and (b), and
screened disorder potential, panels (c) and (d), in each
layer of a hybrid BLG-SLG heterostructure at the charge
neutrality point. In comparing Fig. 2 (a) and Fig. 4 (a),
we notice that the carrier density inhomogeneities are
much stronger for BLG than SLG (all the rest being the
same). This is due to the difference in the low-energy
band structure between SLG and BLG. Due to this dif-
ference the price in kinetic energy to create a density fluc-
tuation, at low energies, is much a higher for SLG than
BLG. Figure 4 (b) shows that the amplitude of the den-
sity fluctuations in the top layer (SLG) is much smaller
in BLG-SLG than in the SLG-SLG. This is due to the
fact that BLG, as the layer closer to the impurities, is
much more efficient than SLG in screening the second
layer from the disorder potential due to the charge im-
purities. This indicates that the mobility of SLG could
be increased significantly when placed in a heterostruc-
ture in which the layer closest to the charge impurities
is BLG. That this is the case is further confirmed by the
disorder-averaged results that we present below.
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Figure 4 (e) shows the profile for single disorder real-
ization of the band-gap in BLG. We see that, due to the
presence of the charge impurities, ∆ is very inhomoge-
nous. In addition, we see that locally ∆ can be as large as
60 meV. One could then wonder why in correspondence
of the regions where ∆ is large the carrier density land-
scape, Fig. 4 (a), does not show region with zero density.
This is due to the fact that, when the doping is set to zero
in both layers, the perpendicular electric field responsi-
ble for opening the band-gap is due to the charge im-
purities that we have assumed to be concentrated below
the first layer. In these conditions, the regions in which
E⊥ is strong correspond to regions where the density of
charge impurities is high and the induced carrier density
is also high. In other words, for the conditions consid-
ered, regions where ∆ 6= 0 are also regions where the
local value of the chemical potential is outside the gap as
shown schematically in Fig. 4 (f). The scenario sketched
in Fig. 4 (f) is not valid when a non-negligible density of
charge impurities is also present above the top graphenic
layers or between the two graphenic layers. Also, when
the doping in one or both the two graphenic layers is not
zero there will be a uniform contribution to E⊥ and this
can create regions where the chemical potential is within
the gap.

Figure 5 shows the profiles for single disorder realiza-
tion of carrier density, screened disorder potential, and
gap, in both layers of a BLG-BLG heterostructure, at
the neutrality point. As for the other heterostructures,
we see that the effect of the screening of the first layer
is to reduce considerably the amplitude of the density
inhomogeneities in the second layer and of the screened
disorder potential. In addition, we see, Fig. 5 (e), (f),
that also the band gap in the second layer is quite smaller
than the one in the first layer.

A quantitative comparison between the theoretical and
the experimental results is only possible by obtaining the
disorder-averaged values of the quantities that are mea-
sured experimentally. In addition, the disorder-averaged
characterization of the ground state carrier density dis-
tribution is an essential ingredient for the development of
the transport theory in the presence of strong, disorder-
induced, carrier density inhomogeneities44.

For BLG-BLG heterostructures, in the limit in which
the band-gap ∆ is zero, from the TFDT equations we
can obtain analytic expressions for the disorder-averaged
quantities that characterize the density profile and the
screened disorder potential. Below we will show that
in some situations the results obtained setting ∆ = 0
provide results for for n(rms) and Vsc (rms) that well ap-
proximate the results obtained by calculating ∆ self-
consistently. By minimizing the functional E[n1, n2] of
BLG-BLG structures with ∆ = 0 with respect to the den-
sity profile n1(r) in the first layer and the density profile
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FIG. 5: (Color online). Color plots showing (a) n1(r), (b)

n2(r), (c) V
(1)
sc , (d) V

(2)
sc , (e) ∆(1), and (f) ∆(2) corresponding

to the BLG-BLG system at charge neutrality point for a single
disorder realization, nimp = 3 × 1011cm−2, d = 1 nm, and
d12 = 1 nm.

n2(r) in the second layer we find:

ni(q) =
rsc|q|e|q|d12

π
[
e2|q|d12 (1 + |q|rsc)

2 − 1
]×

[
V

(j)
D (q)

rsc
− 2m∗

~2
µjδ(q) +

e|q|d12 (1 + |q|rsc)

(
2m∗

~2
µiδ(q)− V

(i)
D (q)

rsc

)]
(15)

where ni(q) is the Fourier transform of the carrier den-
sity profile in layer i = 1, 2, j = 2 (1) if i = 1 (2),
and rsc = ε~2/(2e2m∗) ≈ 3.2 nm is the BLG screening
length. Using the statistical properties of the impurity
distribution c(r) we can calculate the root mean square
of the carrier densities (ni(rms)) and the screened disorder
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potential

V (i)
sc =

V
(i)
D (r)

rsc
+

1

2rsc

∫
dr′

nj(r
′)

[|r− r′|2 + d2
12]

1/2

+
1

2rsc

∫
dr′

ni(r
′)

|r− r′| .

We find:

ni(rms) =

[
2

r2
scπ

nimpIi

(
d

rsc
,

d12

rsc

)]1/2

, (16)

V
(i)
sc(rms) =

~2π

2m∗
ni(rms), (17)

(i = 1, 2) where

I1(x, y) =

∫ ∞
0

dzze−2xz

[
1− e2yz(1 + z)

]2
[1− e2yz(1 + z)2]

2 , (18)

and

I2(x, y) =

∫ ∞
0

dz
z3e2z(y−x)

[1− e2yz(1 + z)2]
2 , (19)

Figure 6 shows the scaling of n(rms) (and Vsc (rms)) in
the two layers as a function of d/rsc and d12/rsc. As
d increases the amplitude of the carrier density inho-
mogeneities decreases rapidly. As d12 increases, n1(rms)

approaches the value found for a single BLG sheet59

whereas n2(rms) decreases exponentially to zero.
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FIG. 6: (Color online). Color plots of (a) I1(d/rsc,d12/rsc)
and (b) I2(d/rsc,d12/rsc) defined in equations (18) and (19).

As discussed in Sec. II when SLG is one of the con-
stituents of the heterostructure, and/or when the BLG’s
band-gap cannot be neglected, due to the nonlinearity in-
duced by the kinetic term, the TFDT equations can only
be solved numerically. Below we present our results for
the disorder-averaged quantities. Apart when explicitly
indicated, all the results were obtained for 160× 160 nm
samples with a spatial coarse-graining of 1 nm62,63. For
each case we used a number of disorder realizations, NS ,
large enough to guarantee that the results would not
change if a larger number of disorder realizations were
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FIG. 7: (Color online). Color plots of (a) n1 (rms), (b)

n2 (rms), (c) V
(1)

sc (rms), and (d) V
(2)

sc (rms) for SLG-SLG sys-

tem as a function of the average carrier density for nimp =
3× 1011cm−2, d = 1 nm, and d12 = 1 nm.

used. For the cases presented below we find that the
results do not depend on Ns when Ns is larger than 500.

Figure 7 shows the root mean square of the carrier
density and of the screened disorder potential in each
layer of a SLG-SLG heterostructure. We see that the
amplitude of the carrier density fluctuations in the first
layer increases with 〈n1〉 and depends quite weakly on
〈n2〉. Analogously, n(rms) in the second layer increases
with 〈n2〉. This is due to the fact that as the doping in-
creases more carriers are available to screen the disorder
potential by creating high density electron (hole) pud-
dles in correspondance of the valleys (peaks) of the bare
disorder potential. However, we see that n2(rms) also de-
pends significantly on 〈n1〉. This is due to the fact that
the first layer, being the closest to the charge impurities,
is most responsible for the screening of the disorder po-
tential and therefore significantly affects the amplitude
of the density fluctuations in the second layer. Both 〈n1〉
and 〈n2〉 contribute to a decrease of the screened disorder
potential in layer 1 and layer 2, as show by Fig. 7 (c) and
(d). The results of Fig. 7 (b) and (d) confirm the conclu-
sion that we derived from the single disorder realization
results: due to the screening effect of the first layer the
amplitude of the carrier density inhomogeneities and the
strength of the screened disorder potential are weaker in
layer 2 than in layer 1.

In presence of a band-gap in the graphene spectrum,
for SLG-SLG systems, the dependence of n(rms) and
Vsc (rms) on 〈n〉1 and 〈n〉2 is qualitative similar to the
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FIG. 8: (Color online). Color plots of (a) n1 (rms), (b)

n2 (rms), (c) V
(1)

sc (rms), (d) V
(2)

sc (rms) (e) fraction of the area of

the sample that is insulating in layer 1, A
(1)
I , and (f) fraction

of the area of the sample that is insulating in layer 2, A
(2)
I ,

for SLG-SLG system with finite band-gap as a function of the
average carrier density for ∆ = 20 meV, nimp = 3×1011cm−2,
d = 1 nm, and d12 = 1 nm.

gapless cases. In the presence of a gap it is interesting
to also look at how the fraction of the area of graphene

that is insulating, A
(1)
I (A

(2)
I ) for layer 1 (2), depends on

the doping in the two layers, see Figs. 8 (e), (f). For
relatively large impurity densities, as considered for the
results shown in Fig. 8 (e), (f)., AI in layer 1 depend only
weakly on the doping of layer 2, and viceversa. However,
as we show in Fig. 15, and as we discuss in section IV,
this is not the case at low impurity densities. In practice
we have that when the screened disorder Vsc (rms) . ∆
the effect of layer j on AI of the other layer can be very
significant.

For heterostructures in which BLG is present we need
take into account the opening of a band-gap due to the
presence of a perpendicular electric field. The calcula-
tion of the band-gap has to be done self-consistently, this
is due to the fact that the redistribution of the charges
in the layer forming the heterostructure, by modifying
the profile of the perpendicular component of the electric
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FIG. 9: (Color online). Plot of (a) n1(rms) and (c) n2(rms)

as a function of 〈n1〉 for nimp = 2 × 1011cm−2, d12 = 1nm,
and d= 1nm. The squares symbols correspond to 〈n2〉 =
1.5× 1012cm−2, and the circle symbols correspond to 〈n2〉 =
−1.5 × 1012cm−2. The curves with open symbols show the
results obtained keeping ∆ fixed, whereas the curves with
solid symbols show the results obtained by calculating ∆ self-
consistently. 〈∆〉 is shown in subplots (b) and (d) also as
a function of 〈n1〉. The dashed lines correspond to the case
∆ = 0eV for both values of 〈n2〉, since the gapless BLG-SLG
system is even in 〈n2〉.

field, affects the profile of the band-gap that itself affect
the screening properties of the heterostructure. To test
the importance of calculating self-consistently the profile
of ∆, for a set of cases for BLG-SLG structures, we first
performed the calculation setting ∆ equal to the value
obtained from Eqs. (4), (7), (8) in the limit of homoge-
nous density profiles in the two layers, with n1 = 〈n1〉,
and n2 = 〈n2〉 and then redid the calculation by obtain-
ing ∆(r) self-consistently. The comparison of the two sets
of results is shown in Fig. 9 in which n(rms) in the two
layers and the average gap (〈∆〉) are plotted as a function
〈n1〉 for a fixed, non zero, value of 〈n2〉: the curves with
open symbols show the results obtained keeping ∆ fixed,
whereas the curves with solid symbols show the results
obtained by calculating ∆ self-consistently. We see that
in general the value of n(rms) obtained using the two ap-
proaches differ. For the case in which 〈n1〉〈n2〉 > 0 we
have that the value of 〈∆〉 obtained self-consistently is
reasonably approximated by the fixed value, ∆fixed, ob-
tained assuming uniform carrier density profiles. How-
ever, for 〈n1〉〈n2〉 < 0 we find that the value of 〈∆〉 is
significantly different from ∆fixed, Fig. 9 (d). The re-
sults of Fig. 9 show that the effect of the disorder cannot
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FIG. 10: (Color online). Color plots of (a) n1 (rms), (b)

n2 (rms), (c) V
(1)

sc (rms), (d) V
(2)

sc (rms), (e) 〈∆〉, and (f) ∆rms for

BLG-SLG system as a function of the average carrier density
for nimp = 3× 1011cm−2, d = 1 nm, and d12 = 1 nm.

be captured by a simple average of a spatially homoge-
nous theory, they require a self-consistent calculation of
the parameters defining the local band-structure. In the
remainder all the results that we present for heterostruc-
tures in which BLG is present were obtained calculating
∆ self-consistently.

For a fixed of nimp, d, d12, Fig. 10 shows the de-
pendence on the 〈n1〉 and 〈n2〉 of the disorder averaged
quantities characterizing the ground state of a BLG-SLG
structure. We see that amplitude of the density fluctua-
tions and the strength of the screened disorder potential,
at low dopings, depend almost exclusively on 〈n2〉, the
average carrier density in SLG, and only very weakly on
〈n1〉, the average carried density in BLG. This is due
to the fact that at low dopings the band gap in BLG is
quite small and so the density of states (DOS) of BLG
is to good approximation constant, independent of 〈n1〉.
On the other hand, in SLG, due to the linear band dis-
persion, the DOS depends linearly on the doping (〈n2〉).
As a consequence, at low dopings, a change of |〈n1〉| has
a negligible effect on the screening properties of the sys-
tem whereas an increase (decrease) of |〈n2〉| increases (de-
creases) the screening due to the second layer, SLG. At
high dopings the situation is complicated by the effect
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FIG. 11: (Color online). Color plots of (a) n1 (rms), (b)

n2 (rms), (c) V
(1)

sc (rms), (d) V
(2)

sc (rms), (e) 〈∆(1)〉, (f) 〈∆(2)〉, (g)

∆
(1)
rms, and (h) ∆

(2)
rms for BLG-BLG system as a function of the

average carrier density for nimp = 3 × 1011cm−2, d = 1 nm,
and d12 = 1 nm.

that a high average density on each layer has on the size
of the gap in BLG, as shown in Fig. 10 (e). As a conse-
quence the DOS in BLG is no more almost independent
of 〈n1〉. This causes a dependence of n(rms) and Vsc (rms)

on the value of 〈n1〉. In particular the asymmetry of the
n(rms) and Vsc (rms) with respect to 〈n1〉, for large val-
ues of 〈n2〉, is due to the asymmetric dependence of ∆
on 〈n1〉, Fig. 10 (e). Figure 10 (f) shows the root mean
square of ∆, 〈∆rms〉. We see the 〈∆rms〉 is in general
of the same order of ∆, indicating the inhomogeneities
of the band-gap in BLG are quite strong and cannot be
treated perturbatively. In addition, we see that, qual-
itatively, 〈∆rms〉 depends on 〈n1〉 and 〈n2〉 in a similar
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FIG. 12: (Color online). Plots of (a) n2 (rms) and (b) V
(2)

sc (rms)

as a function of the carrier density on the graphenic layer
closest the impurities. The blue crosses correspond to the
SLG-SLG system, the red circles correspond to the BLG-SLG
system, and the black dashed curve correponds to bare SLG.

way to 〈∆〉. Another important feature of the results
of Fig. 10 to notice is that when both |〈n1〉 and |〈n2〉|
are large the size of the gap in BLG is comparable to
the strength of the screened disorder potential. In these
conditions we expect that the transport properties might
be significantly affected by the presence of the band-gap
and that BLG might behave as a bad-metal59.

We now consider the BLG-BLG heterostructure. In
this case both the top layer and the bottom layer can have
a gapped band structure. Due to the fact that the band
gap in both layers depends asymmetrically on 〈n1〉 and
〈n2〉, Fig. 11 (e), (f), we find that also n(rms) and Vsc (rms),
in both layers, depend asymmetrically on the average
carrier density of each layer, as shown in Fig. 11 (a)-(d).
We also find that in both layers the r.m.s. of the band
gap is of the same order of 〈∆〉, and that it scales with
〈n1〉 and 〈n2〉, qualitatively, as 〈∆〉. We notice that for
the bottom layer the average band-gap is never larger
than the r.m.s of screened disorder potential. On the
other hand, for the top layer we have that at large |〈n1〉|
and |〈n2〉| the average gap is larger than V

(2)
sc(rms). As a

consequence we expect that when |〈n1〉| and |〈n2〉| are
large the bottom layer will behave as a bad metal and
the top layer as a bad insulator59.

By comparing the results of Fig. 7, 10, and 11, we see
that the three heterostructures, SLG-SLG, BLG-SLG,
BLG-BLG, exhibit disorder-induced density fluctuations
of comparable magnitude, and comparable strengths for
the screened disorder potential. These results suggest
that the effect of disorder on the establishment of col-
lective ground states that has been proposed for SLG-
SLG23–28 BLG-SLG28, and BLG-BLG64 should be com-
parable.

It is interesting to compare the amplitude of n(rms)

and of Vsc (rms) for SLG when isolated and when part,
as top layer, of one of the heterostructures considered.
Figure 12 presents such a comparison. As we had antic-
ipated above we see that n(rms) and Vsc (rms) in SLG are
much lower when part of a heterostructure, due to the
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FIG. 13: (Color online). Color plots of the density corre-
lation C12 = 〈n1n2〉 − 〈n1〉〈n2〉 as a function of the average
carrier density for (a) SLG-SLG, (b) BLG-SLG and (c) BLG-
BLG systems for d= 1 nm, nimp = 3×1011cm−2, and d12 = 1
nm.

screening of the disorder by the bottom layer, than when
isolated. From the results of Fig. 12 we see that n(rms),

when the doping in the bottom layer is ∼ 1012cm−2, can
be reduced by an order of magnitude thanks to screen-
ing of disorder by the bottom layer. Figure 12 (b) shows
that the strength of the screened disorder potential in
SLG is reduced by a factor 3 by the presence of the
graphenic bottom layer. In addition, Fig. 12 shows that
BLG, as a bottom layer, for 〈n1〉 . 2.5 × 1012cm−2, is
more efficient than SLG to screen the top SLG layer. For
〈n1〉 & 2.5 × 1012cm−2 SLG and BLG, as bottom layer,
have the same effect on screening the disorder for the top
layer given that for dopings of this order, or larger, their
band structures are very similar.

The results of Fig. 12 suggest that, assuming that
charge impurities are the dominant source of disorder,
a very effective way to reduce the effects of disorder in
SLG and BLG would be to considerably reduce the thick-
ness of the insulating layer between the graphene sheet
and the back gate. Given the modern techniques to re-
alize graphene devices, this is something that we think
could be done using the currently available experimental
capabilities.

To understand the physics of graphene heterostruc-
tures in the presence of disorder a very important prop-
erty is the correlation, C12 = 〈n1(r)n2(r)〉−〈n1〉〈n2〉, be-
tween the density profiles in the two layers. The knowl-
edge of C12 is important to estimate the effect of dis-
order on the establishment of correlated ground states.
Moreover, the knowledge of the nature of the correla-
tions in the presence of disorder between n1(r) and n2(r)
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FIG. 14: (Color online). Plots of (a) n1 (rms), (b) n2 (rms),

(c) V
(1)

sc (rms), and (d) V
(2)

sc (rms) as a function of the impurity

strength nrmimp for the SLG-SLG system, d= 1 nm, d12 = 1
nm, and for four different carrier density averages. The circle
symbols correspond to 〈n1〉 = 0 cm−2 and 〈n2〉 = 0 cm−2, the
cross symbols to 〈n1〉 = 5 × 1011 cm−2 and 〈n2〉 = 0 cm−2,
the triangle symbols to 〈n1〉 = 0 cm−2 and 〈n2〉 = 5 × 1011

cm−2, and the star symbols correspond to 〈n1〉 = 5 × 1011

cm−2 and 〈n2〉 = 5× 1011 cm−2.

might be essential to understand recent drag resistance
measurements21 on SLG-SLG heterostructures.

As a matter of fact one possible explanation of these
measurements relies on the presence, close to the double
charge neutrality point (i.e. when both 〈n1〉 and 〈n2〉
are equal to zero), of correlated electron hole puddles in
the two layers38,39. Our results for C12, Fig. 13, show
that, for all the three heterostructures considered, C12

is always positive, indicating that to each electron (hole)
puddle in the bottom layer corresponds an electron (hole)
puddle in the top layer. This is due to the fact that the
formation of the electron hole puddles is mainly due to
the presence of charge impurities below the bottom layer.
Assuming that the energy transfer mechanism presented
in Ref. 38,39 is the main mechanism for the strong peak
of the drag resistivity observed in Ref. 21 at the dou-
ble charge neutrality point, our results therefore strongly
suggest that in the SLG-SLG double layer structure used
in Ref. 21, charge impurities below the bottom layer are
the dominant source of disorder and the main reason for
the formation of the electron-hole puddles at low dopings.

When the band structure of SLG is gapped we
have that the scaling n(rms) and Vsc (rms) with nimp,
Figs. 15 (a)-(d), is qualitatively similar to the one ob-
tained for the gapless case. For low values of 〈n1〉 (〈n2〉)
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FIG. 15: (Color online). Plots of (a) n1 (rms), (b) n2 (rms), (c)

V
(1)

sc (rms), (d) V
(2)

sc (rms), (e) fraction of the area of the sample

that is insulating in layer 1, A
(1)
I , and (f) fraction of the area

of the sample that is insulating in layer 2, A
(2)
I , as a function

of the impurity strength nimp for a SLG-SLG system with
gapped graphene: ∆ = 20 meV, d= 1 nm, d12 = 1 nm, and
for four different carrier density averages. The circle symbols
correspond to 〈n1〉 = 0 cm−2 and 〈n2〉 = 0 cm−2, the cross
symbols to 〈n1〉 = 5 × 1011 cm−2 and 〈n2〉 = 0 cm−2, the
triangle symbols to 〈n1〉 = 0 cm−2 and 〈n2〉 = 5× 1011 cm−2,
and the star symbols correspond to 〈n1〉 = 5×1011 cm−2 and
〈n2〉 = 5× 1011 cm−2.

the fraction of the insulating area in layer 1 (2) depends
quit strongly on, nimp, as shown in Figs. 15 (e), (f). In
addition we see that at low doping in layer 1 (2), and low

impurity densities, A
(1)
I (A

(2)
I ) depends quite strongly on

〈n1〉 (〈n2〉), i.e. on the doping of the other graphenic
layer.

Figures 14-17 show the dependence on the impu-
rity density of the statistical quantities characterizing
the disordered the ground state, for SLG-SLG, BLG-
SLG, and BLG-BLG respectively. To obtain these re-
sults we considered four different combination of aver-
age densities in the two layers: (〈n1〉, 〈n2〉) = (0, 0); (5×
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FIG. 16: (Color online). Plots of (a) n1 (rms), (b) n2 (rms), (c)

V
(1)

sc (rms), (d) V
(2)

sc (rms), (e) 〈∆〉, and (f) ∆(rms) as a function

of the impurity strength nimp for the BLG-SLG system, d= 1
nm, d12 = 1 nm, and for four different carrier density aver-
ages. The circle symbols correspond to 〈n1〉 = 0 cm−2 and
〈n2〉 = 0 cm−2, the cross symbols to 〈n1〉 = 5 × 1011 cm−2

and 〈n2〉 = 0 cm−2, the triangle symbols to 〈n1〉 = 0 cm−2

and 〈n2〉 = 5 × 1011 cm−2, and the star symbols correspond
to 〈n1〉 = 5× 1011 cm−2 and 〈n2〉 = 5× 1011 cm−2.

1011cm−2, 0), (0, 5 × 1011cm−2, 0)(5 × 1011cm−2, 5 ×
1011cm−2).

For SLG-SLG, Fig. 14, we have that the scaling with
nimp is qualitatively similar for all the four pairs of
(〈n1〉, 〈n2〉) considered. The main feature is that, as is
the case also for isolated SLG, n(rms) is lower for 〈n〉 ≈ 0
than for 〈n〉 away from the charge neutrality point. This
is the case also for the SLG layer in the BLG-SLG het-
erostructure, as shown in Fig. 16 (b). The other feature
of the results shown in Fig. 16 is that n(rms) and Vsc (rms)

depend very weakly on the 〈n1〉, consistent with results
shown in Fig. 10. The results of Fig. 16 (c) and (e) also
show that the ratio between the screened disorder poten-
tial and the average band gap increases with nimp. We
therefore expect that the effects on the transport prop-
erties due to the presence of a band gap46,59,65–67 will be
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FIG. 17: (Color online). Plots of (a) n1 (rms), (b) n2 (rms),

(c) V
(1)

sc (rms), (d) V
(2)

sc (rms), (e) 〈∆(1)〉, (f) 〈∆(2)〉, (g) ∆
(1)

(rms),

and ∆
(2)

(rms) as a function of the impurity strength nimp for the

BLG-BLG system, d= 1 nm, d12 = 1 nm, and for four differ-
ent carrier density averages. The circle symbols correspond
to 〈n1〉 = 0 cm−2 and 〈n2〉 = 0 cm−2, the cross symbols to
〈n1〉 = 5×1011 cm−2 and 〈n2〉 = 0 cm−2, the triangle symbols
to 〈n1〉 = 0 cm−2 and 〈n2〉 = 5×1011 cm−2, and the star sym-
bols correspond to 〈n1〉 = 5× 1011 cm−2 and 〈n2〉 = 5× 1011

cm−2.

stronger for cleaner samples.
Consistently with the results of Fig. 11 we find that for

BLG-BLG systems the dependence of n(rms) and Vsc (rms)

on nimp is only weakly affected by the values of 〈n1〉 and
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FIG. 18: (Color online). Plots of (a) n1 (rms), (b) n2 (rms),

(c) V
(1)

sc (rms), and (d) V
(2)

sc (rms) as a function of the distance

between the impurities and the lower graphenic layer d for
the SLG-SLG system, d12 = 1 nm, and nimp = 3 × 10(11)

cm−2. The circle symbols correspond to 〈n1〉 = 0 cm−2 and
〈n2〉 = 0 cm−2, the cross symbols to 〈n1〉 = 5 × 1011 cm−2

and 〈n2〉 = 0 cm−2, the triangle symbols to 〈n1〉 = 0 cm−2

and 〈n2〉 = 5 × 1011 cm−2, and the star symbols correspond
to 〈n1〉 = 5× 1011 cm−2 and 〈n2〉 = 5× 1011 cm−2.

〈n2〉, Fig. 17. In Fig. 17 (a)-(d) the dashed line shows
the results obtained equations (16) (17) obtained assum-
ing ∆ = 0. We see that, for the purpose of estimating
n(rms) and Vsc (rms), in BLG-BLG heterostructures ne-
glecting the presence of a band-gap returns results that
are in good agreement with the results obtained taking
into account the fact that ∆ 6= 0. As in BLG-SLG sys-
tems we observe that also in BLG-BLG heterostructures
the ratio Vsc (rms)/〈∆〉 increases with nimp. However, we
notice that for the top BLG layer there is a large range of
values of nimp, and dopings, for which 〈∆〉 is larger than
Vsc (rms) and for which therefore we expect the top layer
to behave as an insulator.

As the distance d of the charge impurities from the
bottom layer is increased, the amplitude of the carrier
density inhomogeneities and of the r.m.s. of the screened
disorder decrease rapidly for all the three heterostruc-
tures considered. This is shown in Figs. 18-20. In partic-
ular, panel (d) of these figures shows that for d & 10 nm,
Vsc (rms) in the top layer is extremely small, smaller than
5 meV for the realistic parameter considered. These re-
sults suggest that the combination of first screening layer
(graphenic or metallic) and a clean buffer layer of a high
quality dielectric, such as hexagonal boron nitride (hBN),
10 nm thick or more would reduce the effects of the dis-
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FIG. 19: (Color online). Plots of (a) n1 (rms), (b) n2 (rms), (c)

V
(1)

sc (rms), (d) V
(2)

sc (rms), (e) 〈∆〉, and (f) ∆(rms) as a function

of d for the BLG-SLG system, d12 = 1 nm, nimp = 3× 10(11)

cm−2, and for four different carrier density averages. The
circle symbols correspond to 〈n1〉 = 0 cm−2 and 〈n2〉 = 0
cm−2, the cross symbols to 〈n1〉 = 5×1011 cm−2 and 〈n2〉 = 0
cm−2, the triangle symbols to 〈n1〉 = 0 cm−2 and 〈n2〉 = 5×
1011 cm−2, and the star symbols correspond to 〈n1〉 = 5×1011

cm−2 and 〈n2〉 = 5× 1011 cm−2.

order due to charge impurities to almost negligible levels.
For BLG-BLG systems we find that the scaling of

n(rms) and Vsc (rms) on d, analogously as for the scal-
ing on nimp, is very well approximated by equations (16),
(17) derived in the limit ∆ = 0. Also, we find that for
d & 3 nm 〈∆〉 dependence on d is very weak, and that
the ratio 〈∆rms〉/〈∆〉 is quite small. This is due to the
fact that as d increases the disorder potential provides a
decreasing contribution to the perpendicular electric field
and therefore to the band-gap of BLG. For very large d
and 〈n1〉 (and/or 〈n2〉) not zero the finite value of the
band-gap is due to the almost uniform charge distribu-
tions in the graphenic layers and metal gates.

Figures 21-23 show the dependence of n(rms), Vsc (rms)

and ∆ on the distance, d12, between the two layers form-
ing the heterostructure. For the SLG-SLG heterostruc-



14

2 4 6 8 10
d (nm)

1

2

3

4

5

6
n

1(
rm

s)
(1

011
cm
−

2
)(a)

2 4 6 8 10
d (nm)

0.5

1.0

1.5

2.0

2.5

3.0

n
2(

rm
s)

(1
011

cm
−

2
) (b)

2 4 6 8 10
d (nm)

5

10

15

20

25

V
(1

)
sc

(r
m

s)
(m

eV
)

(c)

2 4 6 8 10
d (nm)

2

4

6

8

10

12
V

(2
)

sc
(r

m
s)

(m
eV

)
(d)

2 4 6 8 10
d (nm)

2

4

6

8

10

〈∆
(1

) 〉
(m

eV
)

(e)

2 4 6 8 10
d (nm)

0
1
2
3
4
5
6
7
8

〈∆
(2

) 〉
(m

eV
)

(f)

2 4 6 8 10
d (nm)

1
2
3
4
5
6
7

∆
(1

)
rm

s
(m

eV
)

(g)

2 4 6 8 10
d (nm)

0

1

2

3

4

5

∆
(2

)
rm

s
(m

eV
)

(h)

FIG. 20: (Color online). Plots of (a) n1 (rms), (b) n2 (rms), (c)

V
(1)

sc (rms), (d) V
(2)

sc (rms), (e) 〈∆(1)〉, (f) 〈∆(2)〉, (g) ∆
(1)

(rms), and

∆
(2)

(rms) as a function d for the BLG-BLG system, d12 = 1 nm,

nimp = 3× 10(11) cm−2, and for four different carrier density
averages. The circle symbols correspond to 〈n1〉 = 0 cm−2

and 〈n2〉 = 0 cm−2, the cross symbols to 〈n1〉 = 5×1011 cm−2

and 〈n2〉 = 0 cm−2, the triangle symbols to 〈n1〉 = 0 cm−2

and 〈n2〉 = 5 × 1011 cm−2, and the star symbols correspond
to 〈n1〉 = 5× 1011 cm−2 and 〈n2〉 = 5× 1011 cm−2.

ture, Fig. 21, the scaling on d12 of n(rms) and Vsc (rms) in
layer 1 (layer 2) depends strongly on the average carrier
density in layer 2 (layer 1). This is due to the fact that
the ability of layer 1 (layer 2) to screen layer 2 (layer 1)
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FIG. 21: (Color online). Plots of (a) n1 (rms), (b) n2 (rms),

(c) V
(1)

sc (rms), and (d) V
(2)

sc (rms) as a function of the distance

between graphenic layers d12 for the SLG-SLG system, d= 1
nm, and nimp = 3 × 10(11) cm−2. The circle symbols cor-
respond to 〈n1〉 = 0 cm−2 and 〈n2〉 = 0 cm−2, the cross
symbols to 〈n1〉 = 5 × 1011 cm−2 and 〈n2〉 = 0 cm−2, the
triangle symbols to 〈n1〉 = 0 cm−2 and 〈n2〉 = 5× 1011 cm−2,
and the star symbols correspond to 〈n1〉 = 5×1011 cm−2 and
〈n2〉 = 5× 1011 cm−2.

from the disorder potential depends strongly on its aver-
age carrier density. For example, when 〈n2〉 = 0 layer 2
does not provide a significant contribution to the screen-
ing of the disorder potential in layer 1 and therefore mov-
ing it away from layer 1, i.e. increasing d12, has only a

very minor effect on the value of n1(rms) and V
(1)
sc(rms), as

shown in Fig. 21 (a), (b) respectively.

For BLG-SLG heterostructures, Fig. 22, the depen-
dence on d12 of n(rms) and Vsc (rms) it is almost inde-
pendent of the average density in BLG, layer 1, a fact
that is consistent with the other results that we have
presented above for BLG-SLG systems, and that reflects
the fact that the density of states in BLG, at low dop-
ings, depends only very weakly on the value of 〈n〉. As

d12 increases, the values of n1(rms) and V
(1)
sc(rms) approach

asymptotically the values for isolated BLG. Moreover,
we observe that, as d12 increases, the value of 〈∆〉 and
〈∆rms〉 approach a constant value, independent of d12,
but dependent on 〈n2〉, Figs. 22 (e), (f).

This is due to the fact that as d12 increases the screen-
ing effects of the top layer on the bottom layer decreases,
as mentioned above, and the perpendicular electric field
reaches a value that is almost independent of d12, but
still dependent on 〈n2〉. In this conditions ∆ in layer 1
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FIG. 22: (Color online). Plots of (a) n1 (rms), (b) n2 (rms), (c)

V
(1)

sc (rms), (d) V
(2)

sc (rms), (e) 〈∆〉, and (f) ∆(rms) as a function

of d12 for the BLG-SLG system, d= 1 nm, nimp = 3× 10(11)

cm−2, and for four different carrier density averages. The
circle symbols correspond to 〈n1〉 = 0 cm−2 and 〈n2〉 = 0
cm−2, the cross symbols to 〈n1〉 = 5×1011 cm−2 and 〈n2〉 = 0
cm−2, the triangle symbols to 〈n1〉 = 0 cm−2 and 〈n2〉 = 5×
1011 cm−2, and the star symbols correspond to 〈n1〉 = 5×1011

cm−2 and 〈n2〉 = 5× 1011 cm−2.

depends on layer 2 only via 〈n2〉, and 〈∆rms〉 in layer 1,
as d12 increases, approaches a constant value correspond-
ing to the value of 〈∆rms〉 for an isolates BLG sheet with
average band-gap 〈∆〉.

The effect of a change of d12 in BLG-BLG systems is
shown in Fig. 23. In figures 23 (a)-(d) the dashed lines
show the results obtained using equations (16), (17) ob-
tained setting ∆ = 0 in both layers. We see that for
the dependence on d12 of n(rms) and Vsc (rms), as for the
dependence on nimp and d, the results obtained setting
∆ = 0 are in good quantitative agreement with the re-
sults obtained calculating ∆ self-consistently. For the
same reason mentioned for the case of BLG-SLG het-
erostructure, we find that 〈∆〉 and 〈∆rms〉 in the bottom
layer decrease with d12 and approach a constant value for
large d12. As for BLG-SLG we see that as d12 increases

1 2 3 4 5 6
d12 (nm)

6.0
6.2
6.4
6.6
6.8
7.0
7.2
7.4

n
1(

rm
s)

(1
011

cm
−

2
) (a)

1 2 3 4 5 6
d12 (nm)

0.5

1.0

1.5

2.0

2.5

3.0

n
2(

rm
s)

(1
011

cm
−

2
) (b)

1 2 3 4 5 6
d12 (nm)

24.5
25.0
25.5
26.0
26.5
27.0
27.5

V
(1

)
sc

(r
m

s)
(m

eV
)

(c)

1 2 3 4 5 6
d12 (nm)

2

4

6

8

10

12

V
(2

)
sc

(r
m

s)
(m

eV
)

(d)

1 2 3 4 5 6
d12 (nm)

6.5
7.0
7.5
8.0
8.5
9.0
9.5

10.0

〈∆
(1

) 〉
(m

eV
)

(e)

1 2 3 4 5 6
d12 (nm)

5

6

7

8

9

〈∆
(2

) 〉
(m

eV
)

(f)

1 2 3 4 5 6
d12 (nm)

5.0

5.5

6.0

6.5

7.0

∆
(1

)
rm

s
(m

eV
)

(g)

1 2 3 4 5 6
d12 (nm)

4.0

4.5

5.0

5.5

6.0

∆
(2

)
rm

s
(m

eV
)

(h)

FIG. 23: (Color online). Plots of (a) n1 (rms), (b) n2 (rms), (c)

V
(1)

sc (rms), (d) V
(2)

sc (rms), (e) 〈∆(1)〉, (f) 〈∆(2)〉, (g) ∆
(1)

(rms), and

∆
(2)

(rms) as a function d12 for the BLG-BLG system, d= 1 nm,

nimp = 3× 10(11) cm−2, and for four different carrier density
averages. The circle symbols correspond to 〈n1〉 = 0 cm−2

and 〈n2〉 = 0 cm−2, the cross symbols to 〈n1〉 = 5×1011 cm−2

and 〈n2〉 = 0 cm−2, the triangle symbols to 〈n1〉 = 0 cm−2

and 〈n2〉 = 5 × 1011 cm−2, and the star symbols correspond
to 〈n1〉 = 5× 1011 cm−2 and 〈n2〉 = 5× 1011 cm−2.

〈∆rms〉 takes values that very close to the values of 〈∆〉.
In figure 24 we show the probability distribution (Pni

)
for the carrier density in the two layers of a SLG-SLG
heterostructure for different values of the average doping
〈n1〉 and 〈n2〉. For 〈n1〉 = 0 (〈n2〉 = 0) we see that Pn1
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FIG. 24: (Color online). Plots of the carrier density prob-
ability distribution (a) Pn1 , and (b) Pn2 , for the SLG-SLG

system, d= 1 nm, and nimp = 3 × 10(11) cm−2. The red
curve correspond to 〈n1〉 = 0 cm−2 and 〈n2〉 = 0 cm−2, the
green curve to 〈n1〉 = 5 × 1011 cm−2 and 〈n2〉 = 0 cm−2,
the blue curve to 〈n1〉 = 0 cm−2 and 〈n2〉 = 5 × 1011 cm−2,
and the black curve correspond to 〈n1〉 = 5× 1011 cm−2 and
〈n2〉 = 5× 1011 cm−2.

FIG. 25: (Color online). Plots of the carrier density probabil-
ity distribution (a) Pn1 , and (b) Pn2 , and plot of the gap prob-
ability distribution (c) P∆ for the BLG-SLG system, d= 1

nm, and nimp = 3 × 10(11) cm−2. The red curve correspond
to 〈n1〉 = 0 cm−2 and 〈n2〉 = 0 cm−2, the green curve to
〈n1〉 = 5 × 1011 cm−2 and 〈n2〉 = 0 cm−2, the blue curve to
〈n1〉 = 0 cm−2 and 〈n2〉 = 5×1011 cm−2, and the black curve
correspond to 〈n1〉 = 5×1011 cm−2 and 〈n2〉 = 5×1011 cm−2.

(Pn2
) is very strongly peaked around the charge neutral-

ity point: for ni → 0 Pn1
reaches values that are orders

of magnitude outside the scale of the figures. In this
situation Pni

is not Gaussian. As 〈n1〉 (〈n2〉) increases
Pn1

(Pn2
) becomes bimodal: it exhibits a very strong and
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FIG. 26: (Color online). Plots of the carrier density prob-
ability distribution (a) Pn1 , and (b) Pn2 , and plots of the
gap probability distributions (c) P∆(1) , and (d) P∆(2) for the

BLG-BLG system, d= 1 nm, and nimp = 3×10(11) cm−2. The
red curve correspond to 〈n1〉 = 0 cm−2 and 〈n2〉 = 0 cm−2,
the green curve to 〈n1〉 = 5× 1011 cm−2 and 〈n2〉 = 0 cm−2,
the blue curve to 〈n1〉 = 0 cm−2 and 〈n2〉 = 5 × 1011 cm−2,
and the black curve correspond to 〈n1〉 = 5× 1011 cm−2 and
〈n2〉 = 5× 1011 cm−2.

narrow peak at n1 = 0 (n2 = 0) and a much broader peak
around n1 = 〈n1〉 (n2 = 〈n2〉). Only for quite large val-
ues of 〈n〉 Pn is well approximated by a simple Gaussian
centered around 〈n〉. The properties of Pn for SLG-SLG
heterostructures, and its dependence on 〈n〉, are very sim-
ilar to the ones of an isolated layer of graphene29. The
only difference is that, for the same strength of the dis-
order, the peaks of Pn in the second layer are narrower
that in the first layer, and than in an isolated graphene
layer, because of the screening of the disorder by the first
layer. In addition we find that, because of the screening
effect of the first layer, the value of 〈n2〉 above which Pn2

has a simple Gaussian peak centered around 〈n2〉 is lower
than for the first layer (and than for isolated graphene).

Figure 25 (a), (b) show the results for Pni for the case
of BLG-SLG. The presence of a perpendicular electric
field induces the opening of a band-gap in BLG. This
causes the presence of small gapped regions with zero car-
rier density. As a consequence Pn1

exhibits an extremely
narrow peak for n1 = 0 surrounded by two large shoul-
ders, Fig. 25 (a). As a 〈n1〉 increases the narrow peak
at n1 = 0 decreases and the two-shoulders structure be-
comes asymmetric evolving toward a single, broad, Gaus-
sian peak centered around 〈n1〉. Pn in the top layer, the
SLG layer, is qualitatively very similar to the Pn of the
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top layer in SLG-SLG structures, just much narrower due
to the fact that the BLG, as a bottom layer, is much more
efficient to screen the disorder potential.

Figure 25 (c) shows the profile of the probability dis-
tribution (P∆) of the band gap in BLG. We sees that
P∆ has a Gaussian-like shape, approximately centered
at zero (of course limited to positive values). For the
values of 〈n1〉 and 〈n2〉 considered in Fig. 25 (c) the
profiles of P∆ are qualitatively very similar indicating
that, for the cases shown, the main contribution to ∆
is due to the disorder potential. Only the profile for
〈n1〉 = 〈n2〉 = 5 × 1011 cm−2 shows a significant dif-
ference from the profiles for the other cases. This is due
to the fact that for 〈n1〉 = 〈n2〉 = 5×1011 cm−2 a uniform
∆, independent of the disorder, is present that causes a
shift of the average value of P∆.

Figures 26 (a), (b) show the results for Pni
for the

case of BLG-BLG. The results are qualitatively similar
to the results shown in Fig. 25 (a) for the BLG layer of
a BLG-SLG structure, and the explanation of the main
qualitative features of Pn presented for that case apply
also here. Figures 26 (c), (d) show P∆ in the bottom and
top layer respectively. In this case, for 〈n1〉 = 〈n2〉 =
5×1011 cm−2, especially for the top layer, (black dashed
line in Fig. 25 (d), it is clear that the average of P∆ is
shifted to the right due to the fact that when 〈n1〉 6= 0
and/or 〈n2〉 6= 0 a uniform band-gap is present.

IV. ON THE METAL-INSULATOR
TRANSITION IN DOUBLE-LAYER GRAPHENE

HETEROSTRUCTURES

The experiments of Ref. 61 have shown that in SLG-
SLG structures a density-tuned metal-insulator transi-
tion (MIT) can be induced in one of the SLG layers by
tuning the doping in the other layer. The fact that the
MIT in one layer is tuned by the doping in the other
layer strongly suggests that long-range disorder, and in
particular the electron-hole puddles that such disorder
induces, play a dominant role in the physics of the MIT
in SLG-SLG systems.

In Ref. 61 it was proposed that the insulating behavior
of a graphene layer in a SLG-SLG heterostructure is due
to strong Anderson localization made possible in the sys-
tem perhaps due to strong inter-valley scattering. The
“control” graphene layer provides additional screening of
the disorder induced by charge impurities and therefore
a reduction of the amplitude of the electron-hole pud-
dles in the studied layer. In the scenario proposed in
Ref. 61 the increase of the doping in the control layer
can reduce the strength of the carrier density inhomo-
geneities in the studied layer, and therefore an increase of
the resistivity44 to allow the manifestation of the strong
Anderson localization. In Ref. 68 the tunability of lo-
calization effects in the studied layer via the doping of
the control layer is attributed to the dependence on the
doping in the control layer of the scattering rate due to

charge impurities, and of the dephasing time, in the stud-
ied layer.

Ref. 69 proposed a completely different scenario to in-
terpret the results of Ref. 61. In this scenario the dra-
matic increase of the resistivity, close to the CNP, in the
studied layer, as a function of doping in the control layer
is not due to Anderson localization, but to the fact that,
as the amplitude of the disorder-induced electron-hole
puddles decreases, the resistivity at the CNP diverges
since in SLG the density of states vanishes at the CNP.
One of the key observations of Ref. 69 is that, contrary to
metals, in systems like graphene, at low dopings, higher
mobility samples exhibit higher resistivity. This agrees
with the experimental results of Ref. 61 that show that
of the two graphene layers forming the heterostructure,
the one with the higher mobility is the one exhibiting the
highest resistivity at low dopings.

We note that the contrasting interpretations offered in
Ref. 61 and Ref. 69 for the experimental observations in
Ref. 61 both depend crucially on the screening properties
of the double-SLG system, in particular, the suppression
of the impurity-induced puddles in the studied layer due
to the screening induced by the control layer, as noted
already in Ref. 68 using a perturbative analytical ap-
proach of double-SLG screening. Since our current work
is precisely on the non-perturbative screening properties
of double-layer graphene system, we are in a good posi-
tion to shed light on the experimental situation studied
in Ref. 61. Our results show that the two graphene lay-
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〈n ī〉 (1011cm−2)

20

25

30

35

V
sc

(r
m

s)
(m

eV
)

(b)

V
(1)
sc(rms)

V
(2)
sc(rms)

FIG. 27: (Color online). Plots of (a) n(rms) and, (b) Vsc (rms)

at the CNP in layer “i” as a function of 〈n̄i〉, for d= 1nm,
d12 = 1nm, and nimp = 3 × 1011 cm−2, for the gapless SLG-
SLG heterostructure. The squares correspond to the bottom
SLG layer and the circles correspond to the top SLG layer.

ers forming the SLG-SLG heterostructure have in general
very different disordered ground states. This is exempli-
fied by Figs. 27 and 28. Fig. 27 shows n(rms) and Vsc (rms)

at the CNP in layer “i” as a function of the doping in the
other layer, layer ī. We see that the effect of the doping
in the control layer is very different if the studied layer
is the top (2) or the bottom (1). In other words, the
screening properties of the double-SLG heterostructure
are highly asymmetric, as already noted in Ref. 68 us-
ing a simple analysis, with the screening of the bottom
layer by the top layer being very different quantitatively
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from the screening of the top layer by the bottom layer.
This is due to the fact that the charge impurities are
not distributed symmetrically, in particular we assumed
that most of the charge impurities are closed to the sur-
face of the SiO2 since h-BN is much cleaner than SiO2 in
terms of impurity disorder (see Fig. 1). The main qualita-
tive feature that we want to emphasize is that the higher
the disorder potential, Vsc (rms), the higher is n(rms) and
therefore the lower is the resistivity, in contrast to normal
metals for which an increase of disorder corresponds to
a resistivity increase. The results of Fig. 27 support the
scenario presented in Ref. 69 provided our model for the
gapless asymmetric double-SLG heterostructure applies
to the experimental situation.

Fig. 28 shows n(rms) and Vsc (rms) in the bottom (top)
layer at the CNP as function of the doping in the top
(bottom) layer for the case in which the graphene spec-
trum has a gap equal to 20 meV arising from the explicit
presence of h-BN substrate which might break the SLG
sublattice symmetry as discussed in section II and as de-
scribed by Eq. 2. Qualitatively the results are similar to
the ones shown in Fig. 27: the layer with strongest dis-
order has the highest n(rms) and therefore is expected to
be more metallic than the cleaner layer.
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FIG. 28: (Color online). Plots of (a) n(rms) and, (b) Vsc (rms)

at the CN in layer “i” as a function of 〈n̄i〉, for d= 1nm,
d12 = 1nm and nimp = 3 × 1011 cm−2, for the gapped SLG-
SLG heterostructure. The graphene spectrum has a gap equal
to 20 meV. The squares correspond to the bottom SLG layer
and the circles correspond to the top SLG layer.

For SLG-SLG heterostructures for which the graphene
spectrum has gap ∆ it is interesting to consider impu-
rity densities such that Vsc (rms) . ∆. In this situation
we can have ground state configurations for which the
majority of the studied layer is covered by insulating re-
gions. In these conditions the layer is expected to behave
as a (bad) insulator59. It is therefore interesting to see
how the fraction of the sample, AI , covered by insulating
region in the studied layer, at the CNP, depends on the
doping in the control layer for impurity densities such
that Vsc (rms) ∼ ∆. This is shown in Fig. 29. As the
doping in the control layer increases the screened disor-
der in the studied layer decreases, Figs. 29 (c), (d). As
a consequence n(rms), i.e. the amplitude of the carrier
density inhomogeneities also decreases, Figs. 29 (a), (b),

so that in more regions of the studied layer the effective
local Fermi level falls within the band-gap. We then see
that, Figs. 29 (e), (f), as the doping in the control layer
increases, AI increases and, above a threshold, reaches
50%. For dopings in the control layer higher than this
threshold value there will not be a percolating path and
the studied layer is expected to exhibit an insulating be-
havior. The results of Fig. 29 therefore suggest a third
plausible scenario to explain the experimental results of
Ref. 61: in the presence of a band-gap in the graphene
spectrum9,52 the doping in the control layer, by reduc-
ing the strength of the disorder in the studied layer, can
drive it into a ground state in which more than half of
the area is insulating and therefore into an insulating
state. This scenario can be considered a generalization
to the case when a finite band-gap is present of the sce-
nario presented in Ref. 69. In this scenario, where the
interplay between the SLG band-gap introduced by h-
BN and the disorder screening by the double-SLG struc-
ture dominates transport properties in the system, there
is a density-tuned an effective metal-insulator transition
from a gapped insulator to an effective metal due to the
percolation transition. This is akin to the situation in
gapped BLG59 where the opening of the single-particle
gap has a different physical origin.

One important aspect of the results of Fig. 29 is that,
as in the experiment, for the layer with the lower effective
disorder (higher mobility), in our case the top layer, the
threshold value of the doping in the control layer that
drives it to be insulating is lower than for the more dis-
ordered layer (lower mobility). The values of nimp and d
used to obtain the results of Fig. 29, using the effective
medium theory valid for inhomogenous graphene ground
states42, give values of the mobility that are of the same
order 105 cm2/V · s, as observed in Ref. 61. It is therefore
interesting to notice that for these values of nimp we find
threshold values for the doping in the control layer that
are very close to the ones (∼ 3× 1011cm−2) observed in
Ref. 61. Thus, it appears that the presence of an SLG
gap coupled with the effective screening of the disorder
in the studied layer by the tuning of the density in the
control layer may very well be the physics dominating
the observations in Ref. 61 although more experimental
work will be necessary to clarify the situation.

The main difference between our results and the re-
sults of Ref. 61, is that in 61 the top layer has a higher
effective disorder, lower mobility, than the bottom layer
whereas our results show that the top layer has always a
lower effective disorder than the bottom layer, a conse-
quence of the fact that we assumed the charge impurities
to be concentrated on the surface of SiO2 , below the
bottom layer. In our scenario for the MIT, this discrep-
ancy would be resolved assuming that in the experiment
of Ref. 61 the number of charge impurities closer to the
top layer is higher than in the bottom layer, perhaps due
to the fabrication process or to impurities adsorbed by
the open surface of the top layer. Future experimental
work with better control over the spatial location and
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magnitude of the impurity disorder should be able to re-
solve this issue completely and differentiate among the
three distinct interpretations (i.e. Anderson localization,
intrinsic thermal transport in clean graphene near the
Dirac point, and a gap-induced metal-to-insulator tran-
sition as proposed in Refs. 61, 69, and in the current
work, respectively) of the experimental observations in
Ref. 61.
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FIG. 29: (Color online). Plots of (a) n1(rms), (c) V
(1)

sc(rms),

and (e) A
(1)
I as a function of 〈n2〉, at CN in the bottom layer,

and plots of (b) n2(rms), (d) V
(2)

sc(rms), and (f) A
(2)
I as a function

of 〈n1〉 at CN in the top layer, all for d= 5 nm, d12 = 1 nm,
and for different impurity strengths. The circles correspond
to nimp = 1.5× 1011 cm−2, the squares correspond to nimp =
1.75×1011 cm−2, the diamonds to nimp = 2×1011 cm−2, and
the pentagons to nimp = 2.5× 1011 cm−2,

V. DISCUSSION AND CONCLUSIONS

In this work we have studied the effect of long-range
disorder on the carrier distribution density in graphene-
based heterostructures. In particular, we have considered

the case in which the main source of long-range disorder
are charge impurities located closed to the surface of the
substrate. We have considered in detail three graphene-
based heterostructures: (i) SLG-SLG heterostructures
formed by two sheets of single layer graphene sepa-
rated by a dielectric film; (ii) BLG-SLG heterostructures
formed by one sheet of bilayer graphene and one sheet
of single layer graphene separated by a dielectric film;
(iii) BLG-BLG heterostructures formed by two sheets of
bilayer graphene separated by a dielectric film.

Our results show that, as for isolated graphenic layers,
the presence of a long-range disorder potential created
by charge impurities induces long-range carrier density
inhomogeneities, and that, in particular, at the charge
neutrality point these inhomogeneities break up the car-
rier density landscape in electron-hole puddles. However,
we find that the strength of these inhomogeneities, and of
the screened disorder potential, is in general much lower
in the top layer due to the screening of the disorder by
the bottom layer, the one closer to the charge impurities.
This is expected, but our results are the first to quantify
such an effect for a large range of experimentally rele-
vant conditions. In particular, our results show that in
BLG-SLG heterostructure the strength of the screened
disorder in the SLG sheet is much lower than in the top
SLG sheet of a SLG-SLG heterostructure. This is due
to the fact that at low energies, for most experimentally
relevant conditions, BLG has ha higher density of states
than SLG and therefore is much more efficient in screen-
ing the top layer from the disorder. This also suggests
that a very effective way to reduce the effect of charge
impurities in SLG, or BLG, would be to reduce the thick-
ness of the dielectric between the graphenic layer and the
metallic back gate.

One difficulty to obtain an accurate characterization,
in the presence of charge impurities, of the carrier den-
sity profile of heterostructures comprising BLG is the
fact that the impurities, and the carriers in the nearby
graphenic layers and metal gates, create an electric field
with a component perpendicular to BLG that induces
the opening of band-gap (∆) in BLG. As a consequence,
for heterostructures in which BLG is present, the carrier
density profiles and the BLG band-gap have to be calcu-
lated self-consistently. Our results show that in general
the average band gap ∆ is not negligible. For the set
of parameters that we have used we find that the local
value of ∆ can be of the order of 50 meV, the average
〈∆〉 is of the order of 10-15 meV, and that for most of the
cases the root mean square of ∆, 〈∆rms〉, is of the order
of 〈∆〉, indicating that the inhomogeneities in the profile
of ∆(r) are very strong. We expect these results to be
very important to interpret transport measurements in
BLG-based heterostructures.

We have also calculated the correlation (C12) between
the density profile in the bottom layer and the one in
the top layer. We find that for all the heterostructures
and conditions considered the two inhomogenous density
profiles are correlated, meaning that C12 is positive and
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different from zero. This is due to the fact that we as-
sumed that the dominant source of long-range disorder
are charge impurities placed close to the bottom layer
of the heterostructure. Our results are important be-
cause provide a critical element for the interpration of
the recent results on the drag resistivity in SLG-SLG
heterostructures21,38,39.

Our results are also directly relevant to the recently ob-
served metal insulator transition in graphene layers form-
ing a SLG-SLG heterostructure. In particular our results
show that the transition from metallic to insulating in the
studied graphene layer of the SLG-SLG heterostructure,
as a function of the doping in the control layer, can be
explained as a percolation-like transition driven by the
reduction of the amplitude and size of the electron-hole
puddles induced by the additional screening of the impu-
rity charges in the control layer of the disorder potential.

In particular, we show that the possible presence of an
SLG gap, caused by the h-BN substrate, could easily lead
to the observed metal-insulator transition in the system
as the charged disorder in the studied layer in suppressed
due to screening induced by the control layer through
density tuning.

The results presented are directly relevant to imaging
experiments, like scanning tunneling microscopy exper-

iments, and for the interpration of transport measure-
ments. In particular, the results for systems formed by
BLG, by providing both the strength of the band-gap in-
duced by the perpendicular electric field generated self-
consistently by the distribution of charges in the het-
erostructure, and the strength of the screened disorder
potential, allow to identify the parameter regimes where
the BLG sheet is expected to behave as a bad metal
or as a bad insulator59. Our results are also impor-
tant to better understand what are the conditions neces-
sary for the establishment of collective ground states that
have been theoretically predicted for both SLG-SLG24,70,
BLG-SLG28, and BLG-BLG64 heterostructures.
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