Physics 786, Spring 2023

Problem Set 4 Due Friday, March 3, 2023.

Short homework this week.

1. Geodesics on the 2-sphere

In spherical coordinates, the length element on the 2 -sphere of radius R takes the form

$$
d s^{2}=R^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) .
$$

a) With $x^{1}=\theta$ and $x^{2}=\phi$, the metric $g_{i j}=g_{j i}$ is defined such that $d s^{2}=g_{i j} d x^{i} d x^{j}$, summed over i and j. What are the components of $g_{i j}$, written as a 2×2 matrix?
b) Find the nonvanishing components of the connection

$$
\Gamma_{j k}^{i}=\frac{1}{2} g^{i m}\left(\frac{\partial g_{m j}}{\partial x^{k}}+\frac{\partial g_{m k}}{\partial x^{j}}-\frac{\partial g_{j k}}{\partial x^{m}}\right) .
$$

c) Consider a path parametrized by a parameter t. The paths of shortest distance satisfy the geodesic equation:

$$
\frac{d^{2} x^{i}}{d t^{2}}+\Gamma_{j k}^{i} \frac{d x^{j}}{d t} \frac{d x^{k}}{d t}=0 .
$$

Show that arcs along the equator $\theta=\pi / 2$ are geodesics on the 2 -sphere.

