Physics 786, Spring 2023 Problem Set 10, Due Friday, April 28.

A complete draft of your paper is due this Friday. Let me know if you have questions about your paper topic as you are writing it.

1. Newtonian Stars

Consider static, spherically symmetric solutions to Einstein's equations for a fluid with density $\rho(r)$ and pressure p(r), with metric of the form,

$$ds^{2} = -e^{2\phi(r)}dt^{2} + e^{2\lambda(r)}dr^{2} + r^{2}\left(d\theta^{2} + \sin^{2}\theta \,d\varphi^{2}\right)$$

Assume the fluid is nonrelativistic, and consider the nonrelativistic limit of Einstein's equations for this system. Assume $\phi(0) = \lambda(0) = 0$, and

$$\rho(r) = \rho_0 \left(1 - \frac{r}{R} \right)$$

for $r \leq R$, and $\rho(r) = 0$ for r > R.

a) Find the spacetime metric for r < R and r > R. The metric should be continuous across r = R.

b) Find the pressure p(r) in the star such that p(R) = 0.

2. Gravitational Radiation from Binary Black Holes

Suppose two black holes in a binary black hole system each have 30 solar masses, with orbital period beginning at T = 0.01s when the radius of the circular orbit about the center of mass is R = 140 km.

Treating the system in a Newtonian approximation, find the power radiated in gravitational radiation in Watts.