Physics 786, Spring 2023Problem Set 1 Due Wednesday, February 8, 2023.

1. Lorentz tensors

a) If $T^{\mu\nu}$ and $B_{\mu\nu}$ are tensors under Lorentz transformations, prove that $T^{\mu}_{\ \nu}B^{\ \nu}_{\mu}$ is a Lorentz scalar.

b) If $A^{\mu}(x)$ is a vector field, show that $\partial_{\mu}A_{\nu}(x)$ transforms like a (0,2) tensor under Lorentz transformations.

c) Write down all Lorentz scalars that contain exactly two factors of either $A^{\mu}(x)$ or its first derivatives.

d) Show that a symmetric (0,2) tensor $h_{\mu\nu} = h_{\nu\mu}$ remains symmetric following a Lorentz transformation.

e) If $h_{\mu\nu}(x)$ is a symmetric tensor field with $h_{\mu\nu}(x) = h_{\nu\mu}(x)$, write down all (and only) independent Lorentz scalars that contain two factors of either $h_{\mu\nu}(x)$ or its first derivatives.

f) Assume that the Minkowski metric, $\eta_{\mu\nu}$, transforms as a (0,2) tensor under Lorentz transformations. From the defining property of the Lorentz transformations, show that $\eta_{\mu\nu}$ is Lorentz invariant.

g) As in part (f), show that the Kronecker delta $\delta_{\mu}^{\ \nu}$ is an invariant tensor.

h) In units with c = 1, if $p^0 = E$ is the energy of a particle, and **p** is the three-vector momentum of the particle, identify the Lorentz invariant $p_{\mu}p^{\mu}$.

2. The Levi-Civita symbol

The Levi-Civita symbol $\epsilon^{\mu\nu\lambda\sigma}$ is antisymmetric under exchange of any two of its indices, with $\epsilon^{0123} = +1$. Show that as a tensor, $\epsilon^{\mu\nu\lambda\sigma}$ is invariant under Lorentz transformations with det $\Lambda = +1$.

Note that the determinant of a 4×4 matrix A with components $A_{\mu\nu}$, where

 $\mu, \nu \in \{0, 1, 2, 3\}$, can be written

$$\det A = \sum_{\mu\nu\lambda\sigma} \epsilon^{\mu\nu\lambda\sigma} A_{0\mu} A_{1\nu} A_{2\lambda} A_{3\sigma}.$$