Physics 786, Spring 2023

Problem Set 1 Due Wednesday, February 8, 2023.

1. Lorentz tensors

a) If $T^{\mu \nu}$ and $B_{\mu \nu}$ are tensors under Lorentz transformations, prove that $T_{\nu}^{\mu} B_{\mu}{ }^{\nu}$ is a Lorentz scalar.
b) If $A^{\mu}(x)$ is a vector field, show that $\partial_{\mu} A_{\nu}(x)$ transforms like a $(0,2)$ tensor under Lorentz transformations.
c) Write down all Lorentz scalars that contain exactly two factors of either $A^{\mu}(x)$ or its first derivatives.
d) Show that a symmetric $(0,2)$ tensor $h_{\mu \nu}=h_{\nu \mu}$ remains symmetric following a Lorentz transformation.
e) If $h_{\mu \nu}(x)$ is a symmetric tensor field with $h_{\mu \nu}(x)=h_{\nu \mu}(x)$, write down all (and only) independent Lorentz scalars that contain two factors of either $h_{\mu \nu}(x)$ or its first derivatives.
f) Assume that the Minkowski metric, $\eta_{\mu \nu}$, transforms as a $(0,2)$ tensor under Lorentz transformations. From the defining property of the Lorentz transformations, show that $\eta_{\mu \nu}$ is Lorentz invariant.
g) As in part (f), show that the Kronecker delta $\delta_{\mu}{ }^{\nu}$ is an invariant tensor.
h) In units with $c=1$, if $p^{0}=E$ is the energy of a particle, and \mathbf{p} is the three-vector momentum of the particle, identify the Lorentz invariant $p_{\mu} p^{\mu}$.

2. The Levi-Civita symbol

The Levi-Civita symbol $\epsilon^{\mu \nu \lambda \sigma}$ is antisymmetric under exchange of any two of its indices, with $\epsilon^{0123}=+1$. Show that as a tensor, $\epsilon^{\mu \nu \lambda \sigma}$ is invariant under Lorentz transformations with $\operatorname{det} \Lambda=+1$.

Note that the determinant of a 4×4 matrix A with components $A_{\mu \nu}$, where

$$
\mu, \nu \in\{0,1,2,3\}, \text { can be written }
$$

$$
\operatorname{det} A=\sum_{\mu \nu \lambda \sigma} \epsilon^{\mu \nu \lambda \sigma} A_{0 \mu} A_{1 \nu} A_{2 \lambda} A_{3 \sigma} .
$$

