Physics 786, Spring 2017

Problem Set 6, Due Thursday, March 23, 2017.

1. Harmonic Coordinates

Show that the harmonic coordinate conditions $g^{\mu \nu} \Gamma_{\mu \nu}^{\lambda}=0$ are equivalent to the conditions

$$
\frac{\partial}{\partial x^{\mu}}\left(\sqrt{g} g^{\mu \lambda}\right)=0
$$

2. 2D Anti-de Sitter Spacetime

Consider the 2D Anti-de Sitter spacetime with metric

$$
d s^{2}=a^{2}\left(-\cosh ^{2} \rho d \tau^{2}+d \rho^{2}\right), \quad a=\text { const. }
$$

a) Calculate all the components of the affine connection $\Gamma_{\nu \lambda}^{\mu}$.
b) Calculate all the components of the Ricci tensor $R_{\mu \nu}$ and the curvature scalar R.
c) Show that $R_{\mu \nu \lambda \sigma}=\frac{1}{a^{2}}\left(g_{\mu \lambda} g_{\nu \sigma}-g_{\mu \sigma} g_{\nu \lambda}\right)$.
d) Suppose that the 2D Anti-de Sitter spacetime is the solution to Einstein's equations with some energy-momentum tensor $T_{\mu \nu}$. What is $T_{\mu \nu}$ in terms of a and $g_{\mu \nu}$?
e) Let $r=a \sinh \rho$ and $t=a \tau$. Write the metric in r, t coordinates.
3. Vacuum Solutions in Three Dimensions

In this problem we will look for static, isotropic black-holes in three spacetime dimensions.

Assume a metric of the form

$$
d s^{2}=-e^{2 \phi(r)} d t^{2}+e^{2 \lambda(r)} d r^{2}+r^{2} d \theta^{2} .
$$

a) Calculate the nonvanishing Christoffel symbols.
b) Calculate the components of the Ricci tensor $R_{t t}, R_{r r}$, and $R_{\theta \theta}$. The other components of $R_{\mu \nu}$ vanish.
c) Solve the vacuum Einstein equations $R_{\mu \nu}=0$, assuming that the metric approaches the flat metric as $r \rightarrow \infty$. Are there any nontrivial black-hole solutions?

