Physics 786, Spring 2017 Problem Set 4, Due Thursday, March 2, 2017.

1. Index Contraction

a) If A^{μ} and B^{ν} are vectors under general coordinate transformations, then show that $A^{\mu}B_{\mu} = A^{\mu}B^{\nu}g_{\mu\nu}$ is a scalar.

b) Show that the covariant derivative of $A^{\mu}B_{\mu}$ is

$$D_{\nu}(A^{\mu}B_{\mu}) = \partial_{\nu}(A^{\mu}B_{\mu}).$$

2. Covariant derivative of the metric

- a) Show that $g_{\mu\nu;\lambda} = 0$.
- b) Show that $g^{\mu\nu}_{;\lambda} = 0$.
- c) Show that $\delta_{\mu ;\lambda}^{\nu ,\lambda} = 0.$

3. Divergence in Spherical Coordinates

Consider spherical coordinates (r, θ, ϕ) , which are related to Cartesian coordinates (x, y, z) by,

$$x = r \sin \theta \cos \phi$$
$$y = r \sin \theta \sin \phi$$
$$z = r \cos \theta.$$

a) If the components of a vector in Cartesian coordinates are V^x , V^y , V^z , then what are the components of that vector in coordinates (r, θ, ϕ) , *i.e.* V^r , V^{θ} , V^{ϕ} ?

b) Using the covariant expression for the divergence,

$$D_{\mu}V^{\mu} = rac{1}{\sqrt{g}}\partial_{\mu}\left(\sqrt{g}V^{\mu}
ight),$$

calculate the divergence $\nabla \cdot \mathbf{V}$ in 3D Euclidean space in coordinates (r, θ, ϕ) .

c) Your result in part (b) might not look like the expression for the divergence in spherical coordinates that you are familiar with. What is the relation between V^r , V^{θ} , V^{ϕ} and the components of the vector \mathcal{V}^r , \mathcal{V}^{θ} and \mathcal{V}^{ϕ} in terms of an orthonormal basis of unit vectors in spherical coordinates, *i.e.* $\mathbf{V} = \mathcal{V}^r \,\hat{\mathbf{e}}_r + \mathcal{V}^{\theta} \,\hat{\mathbf{e}}_{\theta} + \mathcal{V}^{\phi} \,\hat{\mathbf{e}}_{\phi} = V^x \,\hat{\mathbf{e}}_x + V^y \,\hat{\mathbf{e}}_y + V^z \,\hat{\mathbf{e}}_z$? Now explain how the result of part (b) agrees with the usual expression for $\nabla \cdot \mathbf{V}$ in spherical coordinates.