Physics 786, Spring 2017

Problem Set 3 Due Thursday, February 23, 2017.

1. Electromagnetic Waves

We have seen several analogies between electromagnetism and general relativity. Here we will consider electromagnetic waves in a relativistic framework.

In terms of the field strength tensor $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$, half of the sourcefree Maxwell's equations take the form

$$
\partial_{\mu} F^{\mu \nu}=0 .
$$

a) Show that $F_{\mu \nu}$ is invariant under gauge transformations $A_{\mu}(x) \rightarrow$ $A_{\mu}(x)+\partial_{\mu} f(x)$ for any function $f(x)$.
b) Show that a gauge transformation can generically be chosen to enforce the Lorenz gauge condition, $\partial_{\mu} A^{\mu}=0$. What is the residual gauge freedom that remains after the Lorenz gauge condition is imposed?
c) In Lorenz gauge, Maxwell's equations reduce to the wave equation for each component of A^{μ}. Assume a plane-wave solution of the form

$$
A^{\mu}(x)=\epsilon^{\mu} e^{i k \cdot x}+\epsilon^{\mu *} e^{-i k \cdot x}
$$

What conditions on k^{μ} and ϵ^{μ} follow from the wave equation and the Lorenz gauge condition?
d) With the choice $k^{\mu}=(k, 0,0, k)^{\mu}$, show that the polarization vectors $\epsilon_{(1)}^{\mu}=(0,1,0,0)^{\mu}, \epsilon_{(2)}^{\mu}=(0,0,1,0)^{\mu}$ and $\epsilon_{(3)}^{\mu}=(1,0,0,1)^{\mu}$ satisfy the Lorenz gauge condition. Explain why the solution with $\epsilon_{(3)}$ is unphysical.
e) By considering a rotation about the direction of motion, find the helicities of the plane waves with polarization vectors $\epsilon_{ \pm}^{\mu} \equiv \epsilon_{(1)}^{\mu} \pm i \epsilon_{(2)}^{\mu}$ and $\epsilon_{(3)}$. What are the helicities of the physical solutions?

2. Spherical coordinates

Consider the coordinates $x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi, z=r \cos \theta$ in Euclidean space with length element

$$
d s^{2}=d x^{2}+d y^{2}+d z^{2}
$$

a) Calculate the length element, and hence the components of the metric, in spherical coordinates.
b) Calculate the determinant of the metric, and compare with the Jacobian of the transformation $(x, y, z) \rightarrow(r, \theta, \phi)$.
c) Write expressions for $\nabla \cdot \mathbf{V}, \nabla \times \mathbf{V}, \nabla \phi$ and $\nabla^{2} \phi$ for vector field \mathbf{V} and scalar field ϕ, in spherical coordinates, and remind yourself how you have derived these formulae in the past. What are the basis unit vectors $\mathbf{e}_{r}, \mathbf{e}_{\theta}$ and \mathbf{e}_{ϕ} ?

