Physics 786, Spring 2017Problem Set 3 Due Thursday, February 23, 2017.

1. Electromagnetic Waves

We have seen several analogies between electromagnetism and general relativity. Here we will consider electromagnetic waves in a relativistic framework.

In terms of the field strength tensor $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$, half of the source-free Maxwell's equations take the form

$$\partial_{\mu}F^{\mu\nu} = 0.$$

a) Show that $F_{\mu\nu}$ is invariant under gauge transformations $A_{\mu}(x) \rightarrow A_{\mu}(x) + \partial_{\mu}f(x)$ for any function f(x).

b) Show that a gauge transformation can generically be chosen to enforce the Lorenz gauge condition, $\partial_{\mu}A^{\mu} = 0$. What is the residual gauge freedom that remains after the Lorenz gauge condition is imposed?

c) In Lorenz gauge, Maxwell's equations reduce to the wave equation for each component of A^{μ} . Assume a plane-wave solution of the form

$$A^{\mu}(x) = \epsilon^{\mu} e^{ik \cdot x} + \epsilon^{\mu *} e^{-ik \cdot x}.$$

What conditions on k^{μ} and ϵ^{μ} follow from the wave equation and the Lorenz gauge condition?

d) With the choice $k^{\mu} = (k, 0, 0, k)^{\mu}$, show that the polarization vectors $\epsilon^{\mu}_{(1)} = (0, 1, 0, 0)^{\mu}$, $\epsilon^{\mu}_{(2)} = (0, 0, 1, 0)^{\mu}$ and $\epsilon^{\mu}_{(3)} = (1, 0, 0, 1)^{\mu}$ satisfy the Lorenz gauge condition. Explain why the solution with $\epsilon_{(3)}$ is unphysical.

e) By considering a rotation about the direction of motion, find the helicities of the plane waves with polarization vectors $\epsilon^{\mu}_{\pm} \equiv \epsilon^{\mu}_{(1)} \pm i\epsilon^{\mu}_{(2)}$ and $\epsilon_{(3)}$. What are the helicities of the physical solutions?

2. Spherical coordinates

Consider the coordinates $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$ in Euclidean space with length element

$$ds^2 = dx^2 + dy^2 + dz^2.$$

a) Calculate the length element, and hence the components of the metric, in spherical coordinates.

b) Calculate the determinant of the metric, and compare with the Jacobian of the transformation $(x, y, z) \rightarrow (r, \theta, \phi)$.

c) Write expressions for $\nabla \cdot \mathbf{V}$, $\nabla \times \mathbf{V}$, $\nabla \phi$ and $\nabla^2 \phi$ for vector field \mathbf{V} and scalar field ϕ , in spherical coordinates, and remind yourself how you have derived these formulae in the past. What are the basis unit vectors \mathbf{e}_r , \mathbf{e}_{θ} and \mathbf{e}_{ϕ} ?