Physics 786, Spring 2017

Problem Set 1 Due Thursday, February 2, 2017.

1. Lorentz tensors
a) If $T^{\mu \nu}$ and $B_{\mu \nu}$ are tensors under Lorentz transformations, prove that $T_{\nu}^{\mu} B_{\mu}{ }^{\nu}$ is a Lorentz scalar.
b) If $A^{\mu}(x)$ is a vector field, show that $\partial_{\mu} A_{\nu}(x)$ transforms like a $(0,2)$ tensor under Lorentz transformations.
c) Write down all Lorentz invariants that contain two factors of either $A^{\mu}(x)$ or its first derivatives.
d) If $h_{\mu \nu}(x)$ is a tensor field, write down all Lorentz invariants that contain two factors of either $h_{\mu \nu}(x)$ or its first derivatives.
e) Assume that the Minkowski metric, $\eta_{\mu \nu}$, transforms as a $(0,2)$ tensor under Lorentz transformations. From the defining property of the Lorentz transformations, show that $\eta_{\mu \nu}$ is Lorentz invariant.

2. The Levi-Civita tensor

The Levi-Civita tensor $\epsilon^{\mu \nu \lambda \sigma}$ is antisymmetric under exchange of any two of its indices, with $\epsilon^{0123}=+1$. Show that $\epsilon^{\mu \nu \lambda \sigma}$ is invariant under Lorentz transformations with $\operatorname{det} \Lambda=+1$.

Note that the determinant of a 4×4 matrix A with components $A_{\mu \nu}$, where $\mu, \nu \in\{0,1,2,3\}$, can be written

$$
\operatorname{det} A=\sum_{\mu \nu \lambda \sigma} \epsilon^{\mu \nu \lambda \sigma} A_{0 \mu} A_{1 \nu} A_{2 \lambda} A_{3 \sigma} .
$$

3. Lorentz-covariant form of (some of) Maxwell's equations

Maxwell's equations can be written in a Lorentz-covariant form in terms of the antisymmetric field-strength tensor $F^{\mu \nu}$. The components of $F^{\mu \nu}$ are:

$$
\left(\begin{array}{cccc}
0 & E_{x} / c & E_{y} / c & E_{z} / c \\
-E_{x} / c & 0 & B_{z} & -B_{y} \\
-E_{y} / c & -B_{z} & 0 & B_{x} \\
-E_{z} / c & B_{y} & -B_{x} & 0
\end{array}\right)
$$

where E_{i} and B_{i} are the components of the electric and magnetic field, respectively.
a) What are the components of $F_{\mu \nu}$?
b) Write the equation

$$
\partial_{\mu} F^{\mu \nu}=0
$$

in terms of the \mathbf{E} and \mathbf{B}. Consider separately the components $\nu=0$ and $\nu=i \in\{1,2,3\}$. Compare with Maxwell's equations in terms of the electric and magnetic fields.

4. Lorentz transformation of the electromagnetic field

Suppose $\mathbf{B}=0$ in some reference frame. Consider a Lorentz boost by speed v in the z-direction. By considering the Lorentz transformation of $F^{\mu \nu}$ determine the components of the electric field \mathbf{E}^{\prime} and magnetic field \mathbf{B}^{\prime} in the boosted frame in terms of v and the electric field \mathbf{E} in the original frame.

