Physics 786, Spring 2014Problem Set 5, Due Wednesday, March 19, 2014.

1. Curvature of the Two-Sphere

Consider the two-sphere with metric

$$ds^2 = a^2 \left(d\theta^2 + \sin^2 \theta \, d\varphi^2 \right).$$

a) Calculate all the components of the affine connection $\Gamma^{\mu}_{\nu\lambda}$.

b) Calculate all the components of the Ricci tensor $R_{\mu\nu}$ and the Gaussian curvature, K = -R/2, of the two-sphere.

Hint: In 2D, $R_{\lambda\mu\nu\rho} = \frac{1}{2}R(g_{\lambda\nu}g_{\mu\rho} - g_{\lambda\rho}g_{\mu\nu}).$

2. 2D Anti-de Sitter Spacetime

Consider the 2D Anti-de Sitter spacetime with metric

$$ds^2 = a^2 \left(-\cosh^2 \rho \, d\tau^2 + d\rho^2 \right).$$

a) Calculate all the components of the affine connection $\Gamma^{\mu}_{\nu\lambda}$.

b) Calculate all the components of the Ricci tensor $R_{\mu\nu}$ and the curvature scalar R.

c) Show that $R_{\mu\nu\lambda\sigma} = \frac{1}{a^2} (g_{\mu\lambda}g_{\nu\sigma} - g_{\mu\sigma}g_{\nu\lambda}).$

d) Suppose that the 2D Anti-de Sitter spacetime is the solution to Einstein's equations with some energy-momentum tensor $T_{\mu\nu}$. What is $T_{\mu\nu}$ in terms of a and $g_{\mu\nu}$?

e) Let $r = a \sinh \rho$ and $t = a\tau$. Write the metric in r, t coordinates.

3. Divergence in Spherical Coordinates

Consider spherical coordinates (r, θ, ϕ) , which are related to Cartesian coordinates (x, y, z) by,

$$x = r \sin \theta \cos \phi$$

$$y = r \sin \theta \sin \phi$$

$$z = r \cos \theta.$$

a) If the components of a vector in Cartesian coordinates are V^x , V^y , V^z , then what are the components of that vector in spherical coordinates, V^r , V^{θ} , V^{ϕ} ?

b) Using the covariant expression for the divergence,

$$D_{\mu}V^{\mu} = rac{1}{\sqrt{g}}\partial_{\mu}\left(\sqrt{g}V^{\mu}
ight),$$

calculate the divergence $\nabla\cdot\mathbf{V}$ in 3D Euclidean space in spherical coordinates.

4. Rindler Space

Consider the 2D spacetime whose metric is given by

$$ds^2 = d\rho^2 - \rho^2 \, d\eta^2.$$

- a) Calculate the components of the curvature tensor $R_{\mu\nu\lambda\sigma}$.
- b) What can you infer about this spacetime from your results of part (a)?