Physics 786, Spring 2014

Problem Set 5, Due Wednesday, March 19, 2014.

1. Curvature of the Two-Sphere

Consider the two-sphere with metric

$$
d s^{2}=a^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right) .
$$

a) Calculate all the components of the affine connection $\Gamma_{\nu \lambda}^{\mu}$.
b) Calculate all the components of the Ricci tensor $R_{\mu \nu}$ and the Gaussian curvature, $K=-R / 2$, of the two-sphere.

Hint: In 2D, $R_{\lambda \mu \nu \rho}=\frac{1}{2} R\left(g_{\lambda \nu} g_{\mu \rho}-g_{\lambda \rho} g_{\mu \nu}\right)$.

2. 2D Anti-de Sitter Spacetime

Consider the 2D Anti-de Sitter spacetime with metric

$$
d s^{2}=a^{2}\left(-\cosh ^{2} \rho d \tau^{2}+d \rho^{2}\right) .
$$

a) Calculate all the components of the affine connection $\Gamma_{\nu \lambda}^{\mu}$.
b) Calculate all the components of the Ricci tensor $R_{\mu \nu}$ and the curvature scalar R.
c) Show that $R_{\mu \nu \lambda \sigma}=\frac{1}{a^{2}}\left(g_{\mu \lambda} g_{\nu \sigma}-g_{\mu \sigma} g_{\nu \lambda}\right)$.
d) Suppose that the 2D Anti-de Sitter spacetime is the solution to Einstein's equations with some energy-momentum tensor $T_{\mu \nu}$. What is $T_{\mu \nu}$ in terms of a and $g_{\mu \nu}$?
e) Let $r=a \sinh \rho$ and $t=a \tau$. Write the metric in r, t coordinates.

3. Divergence in Spherical Coordinates

Consider spherical coordinates (r, θ, ϕ), which are related to Cartesian coordinates (x, y, z) by,

$$
\begin{aligned}
& x=r \sin \theta \cos \phi \\
& y=r \sin \theta \sin \phi \\
& z=r \cos \theta .
\end{aligned}
$$

a) If the components of a vector in Cartesian coordinates are V^{x}, V^{y}, V^{z}, then what are the components of that vector in spherical coordinates, V^{r}, V^{θ}, V^{ϕ} ?
b) Using the covariant expression for the divergence,

$$
D_{\mu} V^{\mu}=\frac{1}{\sqrt{g}} \partial_{\mu}\left(\sqrt{g} V^{\mu}\right),
$$

calculate the divergence $\nabla \cdot \mathbf{V}$ in 3D Euclidean space in spherical coordinates.
4. Rindler Space

Consider the 2D spacetime whose metric is given by

$$
d s^{2}=d \rho^{2}-\rho^{2} d \eta^{2} .
$$

a) Calculate the components of the curvature tensor $R_{\mu \nu \lambda \sigma}$.
b) What can you infer about this spacetime from your results of part (a)?

