Physics 786, Spring 2014

Problem Set 3 Due Wednesday, February 19, 2014.

1. Gravitational Waves

a) Suppose that a gravitational plane wave has wavevector $k^{\mu}=(k, 0,0, k)$ and polarization tensor $\epsilon_{\mu \nu}$ satisfying the harmonic gauge condition,

$$
k^{\mu} \epsilon_{\mu \nu}=\frac{1}{2} k_{\nu} \epsilon_{\mu}^{\mu} .
$$

Show that the components of $\epsilon_{\mu \nu}$ are related as follows:

$$
\begin{aligned}
\epsilon_{01} & =-\epsilon_{31}, \quad \epsilon_{02}=-\epsilon_{32}, \quad \epsilon_{22}=-\epsilon_{11}, \\
\epsilon_{03} & =-\frac{1}{2}\left(\epsilon_{33}+\epsilon_{00}\right) .
\end{aligned}
$$

b) Show that by making a gauge transformation which preserves the harmonic gauge condition, $\epsilon_{\mu \nu}$ from part (a) can be put in the form,

$$
\epsilon_{\mu \nu}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & \epsilon_{+} & \epsilon_{\times} & 0 \\
0 & \epsilon_{\times} & -\epsilon_{+} & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

c) Consider a wavepacket $h_{\mu \nu}=f(z-t) \epsilon_{\mu \nu}+$ c.c., with $f(z-t)$ a positive wavefunction spread over some width L, and $\epsilon_{\mu \nu}$ as in part (b). Three particles in the $x^{1}-x^{2}$ plane have spatial coordinates $\mathbf{x}_{1}=(0,0,0), \mathbf{x}_{2}=$ $(a, a, 0)$, and $\mathbf{x}_{3}=(-a, a, 0)$. We may assume $a \ll L$.

Calculate the time evolution of the proper distance between pairs of particles 1 and 2, and between particles 1 and 3, as the gravitational wave passes. Compare the time evolution of these two proper distances.
d) Show that under a rotation of the coordinates by angle θ about the x^{3}-axis, the combination $\epsilon_{+} \pm i \epsilon_{\times}$transforms as,

$$
\epsilon_{+} \pm i \epsilon_{\times} \rightarrow e^{ \pm 2 i \theta}\left(\epsilon_{+} \pm i \epsilon_{\times}\right)
$$

Hence, gravitational waves have helicity ± 2.

