Physics 786, Spring 2012

Problem Set 5 Due Wednesday, March 21, 2012.

1. Curvature of the Two-Sphere

Consider the two-sphere with metric

$$
d s^{2}=a^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right) .
$$

a) Calculate all the components of the affine connection $\Gamma_{\nu \lambda}^{\mu}$.
b) Calculate all the components of the Ricci tensor $R_{i j}$ and the Gaussian curvature, $K=-R / 2$, of the two-sphere.

Hint: In 2D, $R_{\lambda \mu \nu \rho}=\frac{1}{2} R\left(g_{\lambda \nu} g_{\mu \rho}-g_{\lambda \rho} g_{\mu \nu}\right)$.
2. $2 D$ de Sitter Spacetime

Consider the 2D de Sitter spacetime with metric

$$
d s^{2}=a^{2}\left(-d u^{2}+\cosh ^{2} u d \varphi^{2}\right) .
$$

a) Calculate all the components of the affine connection $\Gamma_{\nu \lambda}^{\mu}$.
b) Calculate all the components of the Ricci tensor $R_{\mu \nu}$ and the curvature scalar R.
3. Covariant derivative of the metric

Show that $g_{\mu \nu ; \lambda}=0$.

4. Harmonic Coordinates

Show that the harmonic coordinate conditions $g^{\mu \nu} \Gamma_{\mu \nu}^{\lambda}=0$ are equivalent to the conditions

$$
\frac{\partial}{\partial x^{\mu}}\left(\sqrt{g} g^{\mu \lambda}\right)=0 .
$$

