Physics 786, Spring 2012

Problem Set 4 Due Wednesday, March 14, 2012.

1. Gravitational Radiation by Binary Star

Suppose that a binary star system is composed of two stars of approximately equal mass M, separated by a distance $2 r$, and rotating in a circular orbit about their center of mass nonrelativistically.

Star A follows the trajectory

$$
x_{A}=r \cos (\omega t), \quad y_{A}=r \sin (\omega t), \quad z_{A}=0 .
$$

Star B follows the trajectory

$$
x_{B}=-r \cos (\omega t), \quad y_{B}=-r \sin (\omega t), \quad z_{A}=0 .
$$

a) Using Newtonian mechanics, find ω in terms of G_{N}, M, and r.
b) The energy density of the nonrelativistic binary star system takes the form

$$
T^{00}=M\left[\delta^{3}\left(\mathbf{x}-\mathbf{x}_{A}(t)\right)+\delta^{3}\left(\mathbf{x}-\mathbf{x}_{B}(t)\right)\right] .
$$

Calculate the quadrupole moments $D^{i j}$.
c) Calculate the spatial components of the gravitational radiation field $\bar{h}_{i j}$ in the radiation zone.

2. Transformation of Covariant Derivative

a) Show that under coordinate transformations, the covariant derivative $V_{; \nu}^{\mu}$ transforms as a tensor.
b) Show that under coordinate transformations, the covariant derivative $V_{\mu ; \nu}$ transforms as a tensor.

3. Spherical Coordinates

Spherical coordinates are defined in terms of the Cartesian coordinates x, y, z, by:

$$
\begin{aligned}
& x=r \sin \theta \cos \varphi \\
& y=r \sin \theta \sin \varphi \\
& z=r \cos \theta
\end{aligned}
$$

a) Show that the line element takes the form

$$
d s^{2}=d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right) .
$$

b) Find the volume element $d^{3} x$ in spherical coordinates.
4. Geodesics in Polar Coordinates

Consider the 2D plane described in polar coordinates, with line element

$$
d s^{2}=d r^{2}+r^{2} d \theta^{2}
$$

a) Calculate all of the components of the affine connection in these coordinates.
b) Show that any straight line satisfies the geodesic equation in these coordinates.
c) Find the volume element $d^{2} x$ in polar coordinates.
d) Find the 2D Laplacian $\nabla^{2} f$ in polar coordinates.

