## Physics 786, Spring 2012

Problem Set 3 Due Wednesday, February 22, 2012.

## 1. Gravitational Waves

a) Suppose that a gravitational plane wave has wavevector $k^{\mu}=(k, 0,0, k)$ and polarization tensor $\epsilon_{\mu \nu}$ satisfying the harmonic gauge condition,

$$
k^{\mu} \epsilon_{\mu \nu}=\frac{1}{2} k_{\nu} \epsilon_{\mu}^{\mu} .
$$

Show that the components of $\epsilon_{\mu \nu}$ are related as follows:

$$
\begin{aligned}
& \epsilon_{01}=-\epsilon_{31}, \quad \epsilon_{02}=-\epsilon_{32}, \quad \epsilon_{22}=-\epsilon_{11} \\
& \epsilon_{03}=-\frac{1}{2}\left(\epsilon_{33}+\epsilon_{00}\right)
\end{aligned}
$$

b) Show that by making a gauge transformation which preserves the harmonic gauge condition, $\epsilon_{\mu \nu}$ from part (a) can be put in the form,

$$
\epsilon_{\mu \nu}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & \epsilon_{x x} & \epsilon_{x y} & 0 \\
0 & \epsilon_{x y} & -\epsilon_{x x} & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

## 2. Particle motion in a gravitational field

Derive the equations of motion for a particle's trajectory in a gravitational field described by $g_{\mu \nu}(x)$, beginning with the action

$$
S=\frac{m}{2} \int d \tau \frac{d x^{\mu}}{d \tau} \frac{d x^{\nu}}{d \tau} g_{\mu \nu}
$$

and show that they are equivalent to the equations describing the motion a freely-falling particle in coordinates with spacetime metric $g_{\mu \nu}$.

## 3. Particle motion in scalar gravity

Suppose that gravitation were described by a scalar field $\phi(x)$ which coupled to the trace of the energy-momentum tensor, so that the particle action had the form,

$$
S=m \int d \tau \frac{d x^{\mu}}{d \tau} \frac{d x^{\nu}}{d \tau} \eta_{\mu \nu}-\lambda \int d^{4} x \phi T_{\mu}^{\mu},
$$

where $\lambda$ is a coupling constant and $T^{\mu \nu}$ is the energy-momentum tensor of the particle,

$$
T^{\mu \nu}=m \frac{d x^{\mu}}{d \tau} \frac{d x^{\nu}}{d \tau} \delta^{3}(\mathbf{x}-\mathbf{x}(t)) \frac{d \tau}{d t} .
$$

For a prescribed field $\phi(x)$ (i.e. ignoring the backreaction of the particle motion on $\phi(x)$ ), derive the equations of motion for the particle's trajectory and show that those equations can be written in the form,

$$
\frac{d^{2} x^{\mu}}{d \tau^{2}}+\Gamma_{\alpha \beta}^{\mu} \frac{d x^{\alpha}}{d \tau} \frac{d x^{\beta}}{d \tau}=0
$$

for some $\Gamma_{\alpha \beta}^{\mu}$ which depends on $\phi(x)$.
Can you define a $g_{\mu \nu}$ in terms of $\phi(x)$ such that $\Gamma_{\alpha \beta}^{\mu}$ are the Christoffel symbols in the spacetime metric given by $g_{\mu \nu}$ ?

