Physics 786, Spring 2012

Problem Set 1 Due Wednesday, February 1, 2012.

1. Lorentz tensors

Assume the matrix $\Lambda^{\mu}{ }_{\nu}$ describes a Lorentz transformation, such that $x^{\mu} \rightarrow$ $x^{\mu}=\Lambda_{\nu}^{\mu} x^{\nu}$.
a) If $T^{\mu \nu}$ and $B^{\mu \nu}$ are tensors under Lorentz transformations, prove that $T^{\mu \nu} B_{\nu \mu}$ and $T^{\mu \nu} B_{\mu \nu}$ are Lorentz scalars.
b) How does $T^{\mu \nu} B_{\mu \alpha}$ transform? What kind of tensor is this?
c) If $A_{\mu \nu}(x)$ is a tensor field, write down all Lorentz invariants that can be written as a product of two factors of either $A_{\mu \nu}(x)$ or its first derivatives.
d) Assume that the Minkowski metric, $\eta_{\mu \nu}$, transforms as a $(0,2)$ tensor under Lorentz transformations. Show that $\eta_{\mu \nu}$ is invariant under Lorentz transformations.

2. The Levi-Civita tensor

The Levi-Civita tensor $\epsilon^{\mu \nu \lambda \sigma}$ is antisymmetric under exchange of any two of its indices, with $\epsilon^{0123}=+1$. Show that $\epsilon^{\mu \nu \lambda \sigma}$ is invariant under Lorentz transformations with $\operatorname{det} \Lambda=+1$.

Note that the determinant of a 4×4 matrix A with components $A_{\mu \nu}$, where $\mu, \nu \in\{0,1,2,3\}$, can be written

$$
\operatorname{det} A=\sum_{\mu \nu \lambda \sigma} \epsilon^{\mu \nu \lambda \sigma} A_{0 \mu} A_{1 \nu} A_{2 \lambda} A_{3 \sigma} .
$$

3. Lorentz transformation of the electromagnetic field

Maxwell's equations can be written in a Lorentz-covariant form in terms of the antisymmetric field-strength tensor $F^{\mu \nu}$. The components of $F^{\mu \nu}$
are:

$$
\left(\begin{array}{cccc}
0 & E_{x} / c & E_{y} / c & E_{z} / c \\
-E_{x} / c & 0 & B_{z} & -B_{y} \\
-E_{y} / c & -B_{z} & 0 & B_{x} \\
-E_{z} / c & B_{y} & -B_{x} & 0
\end{array}\right)
$$

where E_{i} and B_{i} are the components of the electric and magnetic field, respectively.

Suppose $\mathbf{B}=0$ in some reference frame. Consider a Lorentz boost by speed v in the z-direction. By considering the Lorentz transformation of $F^{\mu \nu}$ determine the components of the electric field \mathbf{E}^{\prime} and magnetic field \mathbf{B}^{\prime} in the boosted frame in terms of the electric field \mathbf{E} in the original frame and v.
4. Lorentz invariants of electromagnetism

In terms of \mathbf{E} and \mathbf{B}, calculate $F_{\mu \nu} F^{\mu \nu}$ and $\epsilon_{\mu \nu \lambda \sigma} F^{\mu \nu} F^{\lambda \sigma}$.

