Physics 786, Fall 2018

Problem Set 9, Due Monday, November 19.

1. Final Paper

You should already have a topic for your final paper. What is it?

2. Killing Vectors

a) Consider 2D Euclidean space in Cartesian coordinates x, y. Find the Killing vectors related to translations and rotation about $x=y=0$ in these coordinates.
b) What are the corresponding "constants of the motion" along geodesics and their physical interpretation?

3. Schwarzschild Trajectories

a) A massive test particle is released from $r=R>2 G M$ in the Schwarzschild geometry (in standard coordinates), and falls radially inward. Show that the following correctly parametrizes the trajectory:

$$
\begin{aligned}
r & =\frac{R}{2}(1+\cos \eta) \\
\tau & =\frac{R}{2}\left(\frac{R}{2 G M}\right)^{1 / 2}(\eta+\sin \eta)
\end{aligned}
$$

b) Show that the proper time elapsed when the particle reaches $r=2 G M$ is finite.

4. The Photon Sphere

a) Find the radius of circular orbits (defined by the value of r in standard Schwarzschild coordinates) in terms of the black hole mass. The collection of circular orbits is called the photon sphere.
b) In standard coordinates, what is $d \phi / d t$ in the circular orbit with $\theta=$ $\pi / 2$?

5. Death by Black Hole

Suppose a two-meter-tall human falls feet-first into a black hole with the mass of the sun. Suppose the human can withstand the tidal acceleration gradient until the feet would accelerate $100 \mathrm{~m} / \mathrm{s}^{2}$ more than than the head along a geodesic. What value of r in standard coordinates do the feet reach before the human dies?

Hint: the tidal acceleration gradient is determined from the geodesic deviation $\frac{D^{2}}{D \tau^{2}}\left(\delta x^{\mu}\right)$.

