Physics 786, Fall 2018

Problem Set 6, Due Wednesday, October 24.

1. Curvature of the Two-Sphere

Consider the two-sphere of radius a, with metric

$$
d s^{2}=a^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right) .
$$

a) (Re)calculate the Christoffel symbols of the two-sphere of radius a. How are those Christoffel symbols related to those of the two-sphere with radius 1 ?
b) Calculate all the components of the Ricci tensor $R_{\mu \nu}$ and the Gaussian curvature, $K=-R / 2$, of the two-sphere.
c) In $2 \mathrm{D}, R_{\lambda \mu \nu \rho}=\frac{1}{2} R\left(g_{\lambda \nu} g_{\mu \rho}-g_{\lambda \rho} g_{\mu \nu}\right)$. Check that this relation is true for the two-sphere.
2. Rindler Space

Consider the 2D spacetime whose metric is given by

$$
d s^{2}=d \rho^{2}-\rho^{2} d \eta^{2}
$$

a) Calculate the components of the curvature tensor $R_{\mu \nu \lambda \sigma}$.
b) What can you infer about this spacetime from your results of part (a)?
3. 2D Anti-de Sitter Spacetime

Consider the 2D Anti-de Sitter spacetime with metric

$$
d s^{2}=a^{2}\left(-\cosh ^{2} \rho d \tau^{2}+d \rho^{2}\right), \quad a=\text { const. }
$$

a) Calculate all the components of the affine connection $\Gamma_{\nu \lambda}^{\mu}$.
b) Calculate all the components of the Ricci tensor $R_{\mu \nu}$ and the curvature scalar R.
c) Suppose that the 2D Anti-de Sitter spacetime is the solution to Einstein's equations with some energy-momentum tensor $T_{\mu \nu}$. What is $T_{\mu \nu}$ in terms of a and $g_{\mu \nu}$?
d) Let $r=a \sinh \rho$ and $t=a \tau$. Write the metric in r, t coordinates.
4. Weyl tensor

Show that the Weyl tensor, which in four dimensions is given by

$$
\begin{aligned}
C_{\lambda \mu \nu \kappa}=R_{\lambda \mu \nu \kappa}- & \frac{1}{2}\left(g_{\lambda \nu} R_{\mu \kappa}-g_{\lambda \kappa} R_{\mu \nu}-g_{\mu \nu} R_{\lambda \kappa}+g_{\mu \kappa} R_{\lambda \nu}\right) \\
& +\frac{1}{6} R\left(g_{\lambda \nu} g_{\mu \kappa}-g_{\lambda \kappa} g_{\mu \nu}\right),
\end{aligned}
$$

is traceless, i.e. vanishes upon contraction of any pair of its indices.

5. Counting components of curvature

In D spacetime dimensions, how many independent components are there in:
a) the Riemann tensor?
b) the Ricci tensor?
c) the Weyl tensor (i.e. the traceless part of the Riemann tensor)?

