Physics 786, Fall 2018Problem Set 4 Due Wednesday, October 3, 2018.

1. Geodesics on the 2-sphere

In spherical coordinates, the length element on the 2-sphere of radius ${\cal R}$ takes the form

$$ds^2 = R^2 \left(d\theta^2 + \sin^2 \theta \, d\phi^2 \right).$$

a) With $x^1 = \theta$ and $x^2 = \phi$, the metric $g_{ij} = g_{ji}$ is defined such that $ds^2 = g_{ij}dx^i dx^j$, summed over *i* and *j*. What are the components of g_{ij} , written as a 2×2 matrix?

b) Find the nonvanishing components of the connection

$$\Gamma^{i}_{jk} = \frac{1}{2}g^{im} \left(\frac{\partial g_{mj}}{\partial x^{k}} + \frac{\partial g_{mk}}{\partial x^{j}} - \frac{\partial g_{jk}}{\partial x^{m}}\right).$$

c) Consider a path parametrized by a parameter t. The paths of shortest distance satisfy the geodesic equation:

$$\frac{d^2x^i}{dt^2} + \Gamma^i_{jk}\frac{dx^j}{dt}\frac{dx^k}{dt} = 0.$$

Show that arcs along the equator $\theta = \pi/2$ are geodesics on the 2-sphere.

2. Geometry of the paraboloid

Consider the 2-dimensional paraboloid described by $z = x^2 + y^2$ embedded in 3-dimensional Euclidean space with Cartesian coordinates x, y, z.

a) What are the components of the metric on the paraboloid described by coordinates x and y?

b) Change variables to r, θ , with $x = r \cos \theta$, $y = r \sin \theta$. What are the components of the metric on the paraboloid in these coordinates?

c) Calculate the Christoffel symbols in the r, θ coordinates.

3. Coordinate transformation of the Christoffel symbols

Given a metric tensor $g_{\mu\nu}(x)$, consider the coordinate transformation $x^{\mu} \rightarrow x'^{\mu}(x)$. How does the Christoffel symbol $\Gamma^{\mu}_{\nu\lambda}$ transform under this coordinate transformation?

Are the Christoffel symbols the components of a tensor under general coordinate transformations?