Physics 786, Fall 2018

Problem Set 4 Due Wednesday, October 3, 2018.

1. Geodesics on the 2-sphere

In spherical coordinates, the length element on the 2 -sphere of radius R takes the form

$$
d s^{2}=R^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) .
$$

a) With $x^{1}=\theta$ and $x^{2}=\phi$, the metric $g_{i j}=g_{j i}$ is defined such that $d s^{2}=g_{i j} d x^{i} d x^{j}$, summed over i and j. What are the components of $g_{i j}$, written as a 2×2 matrix?
b) Find the nonvanishing components of the connection

$$
\Gamma_{j k}^{i}=\frac{1}{2} g^{i m}\left(\frac{\partial g_{m j}}{\partial x^{k}}+\frac{\partial g_{m k}}{\partial x^{j}}-\frac{\partial g_{j k}}{\partial x^{m}}\right) .
$$

c) Consider a path parametrized by a parameter t. The paths of shortest distance satisfy the geodesic equation:

$$
\frac{d^{2} x^{i}}{d t^{2}}+\Gamma_{j k}^{i} \frac{d x^{j}}{d t} \frac{d x^{k}}{d t}=0
$$

Show that arcs along the equator $\theta=\pi / 2$ are geodesics on the 2 -sphere.

2. Geometry of the paraboloid

Consider the 2-dimensional paraboloid described by $z=x^{2}+y^{2}$ embedded in 3-dimensional Euclidean space with Cartesian coordinates x, y, z.
a) What are the components of the metric on the paraboloid described by coordinates x and y ?
b) Change variables to r, θ, with $x=r \cos \theta, y=r \sin \theta$. What are the components of the metric on the paraboloid in these coordinates?
c) Calculate the Christoffel symbols in the r, θ coordinates.

3. Coordinate transformation of the Christoffel symbols

Given a metric tensor $g_{\mu \nu}(x)$, consider the coordinate transformation $x^{\mu} \rightarrow$ $x^{\prime \mu}(x)$. How does the Christoffel symbol $\Gamma_{\nu \lambda}^{\mu}$ transform under this coordinate transformation?

Are the Christoffel symbols the components of a tensor under general coordinate transformations?

