Physics 786, Fall 2018

Problem Set 2, Due in the second class after returning from the storm.

1. Free fall

Repeat and complete the derivation from class that along the trajectory of a freely falling particle,

$$
\frac{d}{d \tau}\left(g_{\mu \nu} \frac{d x^{\mu}}{d \tau} \frac{d x^{\nu}}{d \tau}\right)=0
$$

2. Gravitational Redshift

Suppose a radio signal from a GPS satellite is sent to the ground. If the satellite is $20,200 \mathrm{~km}$ above Earth's surface, by what fraction is the frequency of the radio wave increased due to gravity compared to the emitted frequency when observed on the ground?

3. Geodesics in Scalar Gravity

Suppose the metric took the form $g_{\mu \nu}=\eta_{\mu \nu}(1+2 \phi(\mathbf{x}, \mathbf{t}))$, where ϕ is the gravitational potential.
a) If $\phi=g z$, where g is the acceleration of gravity near the earth and z is the vertical displacement from the ground, what are the nonvanishing components of the Christoffel symbols $\Gamma_{\nu \lambda}^{\mu}$?
b) In the Newtonian approximation, use the geodesic equation to calculate the acceleration of a freely falling massive particle $\frac{d^{2} \mathbf{x}}{d t^{2}}$.

4. External Forces

In the presence of an electromagnetic field, the equation of motion for a charged particle is modified from the geodesic equation as follows:

$$
\frac{d^{2} X^{\lambda}}{d \tau^{2}}+\Gamma_{\mu \nu}^{\lambda} \frac{d X^{\mu}}{d \tau} \frac{d X^{\nu}}{d \tau}=-\frac{e}{m} F^{\lambda} \frac{d X^{\nu}}{d \tau} .
$$

For nonrelativistic motion in a weak, static gravitational field, write an approximate form for the time component and spatial components of this equation in terms of the gravitational potential ϕ and the electromagnetic fields \mathbf{E} and \mathbf{B}.

