Consequences of the Equivalence Principle
(for particle motion)

Weak Equivalence Principle — equality of inertial
and gravitational mass: \(m_i = m_g \)
\[F = m_i \tilde{g} = m_g \tilde{g} \Rightarrow \tilde{g} = \tilde{g} \quad \text{independent of object.} \]

Einstein Equivalence Principle — In small enough
regions of spacetime, the laws of physics reduce
to those of special relativity. (In a small box
which is freely falling, over a short enough period
of time it is impossible to detect the gravitational field.)
This applies to both nonrelativistic and (Strong
Equivalence Principle) relativistic systems.

In the absence of gravity or any forces, in
any inertial frame particles move in straight lines
in spacetime,
\[\frac{d^2 \mathbf{x}}{dt^2} = 0, \quad \text{where} \quad dt^2 = -c^2 ds^2 = c^2 dx^2 + dy^2 + dz^2, \]
and \(x^a \) are the particle's coordinates in an inertial
coordinate system.

For \(a = 0 \), \[\frac{d^2 \mathbf{x}}{dt^2} = \frac{d^2 \mathbf{t}}{dt^2} = 0 \Rightarrow \mathbf{t} = 9.2 \pm 6 \text{ for some } a. \]

For \(a = i \in \{1, 2, 3\} \), \[\frac{d^2 \mathbf{x}_i}{dt^2} = 0 \Rightarrow \mathbf{x}_i = A_i \mathbf{t} + \mathbf{B}_i = \tilde{A}_i \mathbf{t} + \tilde{B}_i \]
where \(\tilde{A}_i = A_i/a, \tilde{B}_i = B_i - bA_i \).
Thus describes a particle moving at constant velocity \(\mathbf{v} = A_i/a. \)
In the presence of gravity (but no external forces), the Einstein Equivalence Principle implies that there is a freely falling coordinate system in which the particle's motion is identical to that in the absence of gravity.

Newtonian Perspective: A box carrying Isaac and an apple accelerate towards the Earth due to the gravitational force on the box. The falling box sets up an accelerating, non-inertial coordinate system.

\[t = 0 \quad \text{to} \quad t > 0 \]

\[\text{Earth} \quad \text{(not drawn to scale)} \]

\[\text{Earth} \]

Einsteinian Perspective: A freely falling box and its contents set up an inertial frame locally.

\[t = 0 \quad \text{to} \quad t > 0 \]

In a freely falling coordinate system, defined locally to a particle, the particle's motion satisfies \(\frac{d^2 x^2}{dt^2} = 0 \), just as in the absence of gravity.
Suppose we consider the same motion in an arbitrary coordinate system x^m, so that $\delta x = \delta x^m(x^n)$.

\[
0 = \frac{d^2 \delta x}{dt^2} = \frac{d}{dt} \left(\frac{d \delta x^m}{dt} \right) = \frac{d}{dt} \left(\frac{\partial \delta x^m}{\partial x^n} \frac{dx^n}{dt} \right) \tag{chain rule}
\]

\[
= \frac{\partial \delta x^m}{\partial x^n} \frac{d^2 x^n}{dt^2} + \frac{\partial^2 (\delta x^m)}{\partial x^n \partial x^k} \frac{dx^n}{dt} \frac{dx^k}{dt}
\]

Multiply by $\frac{\partial x^\lambda}{\partial \delta x^m}$, use $\frac{\partial \delta x^m}{\partial x^n} \frac{\partial x^n}{\partial \delta x^m} = \delta^\lambda_m$

\[
\Rightarrow \frac{\partial x^\lambda}{\partial \delta x^m} \frac{d^2 x^n}{dt^2} + \frac{\partial x^\lambda}{\partial \delta x^m} \frac{\partial^2 \delta x^m}{\partial x^n \partial x^k} \frac{dx^n}{dt} \frac{dx^k}{dt} = 0
\]

\[
\delta^\lambda_m \frac{d^2 x^n}{dt^2} + \frac{\partial x^\lambda}{\partial \delta x^m} \frac{\partial^2 \delta x^m}{\partial x^n \partial x^k} \frac{dx^n}{dt} \frac{dx^k}{dt} = 0
\]

\[
\frac{d^2 x^n}{dt^2} + \Gamma^\lambda_{mn} dx^m \frac{dx^n}{dt} = 0
\]

where

\[
\Gamma^\lambda_{mn} = \frac{\partial x^\lambda}{\partial \delta x^m} \frac{\partial^2 \delta x^m}{\partial x^n \partial x^k}
\]

is called the affine correction.

The proper time may also be expressed in the new coordinate system:

\[
dt^2 = -\gamma_{ab} \frac{d \delta x^a}{dt} \frac{d \delta x^b}{dt}
\]

\[
= -\gamma_{ab} \left(\frac{\partial \delta x^a}{\partial x^m} \frac{dx^m}{dt} \right) \left(\frac{\partial \delta x^b}{\partial x^k} \frac{dx^k}{dt} \right)
\]

\[
= -\gamma_{mn} dx^m \frac{dx^n}{dt}
\]
where $g_{\mu\nu}$ is the metric tensor.

\[
g_{\mu\nu} = \frac{\partial x^\lambda}{\partial x^\mu} \frac{\partial x^\lambda}{\partial x^\nu} d\lambda d\mu
\]

Note! Along the trajectory of a photon, $d\tau^2 = 0$, but we can instead use $\sigma = 3^\circ$ to parameterize the trajectory. The equations of motion and vanishing proper time become (in the freely falling frame)

\[
\frac{d^2x^\mu}{d\sigma^2} = 0
\]

\[
0 = -\frac{1}{\gamma} \frac{dx^\mu}{d\sigma} \frac{d\sigma}{d\tau}
\]

which in a general coordinate system becomes

\[
\frac{d^2x^\mu}{d\sigma^2} + \Gamma^\mu_{\nu\lambda} \frac{dx^\nu}{d\sigma} \frac{dx^\lambda}{d\sigma} = 0
\]

\[
0 = -g_{\mu\nu} \frac{dx^\mu}{d\sigma} \frac{dx^\nu}{d\sigma}
\]

where $\Gamma^\mu_{\nu\lambda}$ and $g_{\mu\nu}$ are as before.
The proper time between two events with a given infinitesimal coordinate separation is determined by the metric tensor $g_{\mu\nu}$. The motion of a particle in a gravitational field is determined by the affine connection $\Gamma^\lambda_{\mu\nu}$. Thus, in fact, a relation between $\Gamma^\lambda_{\mu\nu}$ and $g_{\mu\nu}$.

Recall that $g_{\mu\nu} = \frac{\partial \xi^\mu}{\partial x^\alpha} \frac{\partial \xi^\nu}{\partial x^\beta} \eta_{\alpha\beta}$

Differentiating w.r.t. x^λ gives

$$\frac{\partial g_{\mu\nu}}{\partial x^\lambda} = \frac{\partial^2 \xi^\lambda}{\partial x^\mu \partial x^\alpha} \frac{\partial \xi^\nu}{\partial x^\beta} \eta_{\alpha\beta} + \frac{\partial \xi^\lambda}{\partial x^\mu} \frac{\partial^2 \xi^\nu}{\partial x^\beta \partial x^\alpha} \eta_{\alpha\beta} + \frac{\partial \xi^\lambda}{\partial x^\alpha} \frac{\partial^2 \xi^\nu}{\partial x^\beta \partial x^\mu} \eta_{\alpha\beta}$$

$$= \Gamma^\lambda_{\mu\rho} \frac{\partial \xi^\rho}{\partial x^\alpha} \frac{\partial \xi^\nu}{\partial x^\beta} \eta_{\alpha\beta} + \Gamma^\lambda_{\nu\rho} \frac{\partial \xi^\rho}{\partial x^\alpha} \frac{\partial \xi^\mu}{\partial x^\beta} \eta_{\alpha\beta}$$

$$\frac{\partial g_{\mu\nu}}{\partial x^\lambda} = \Gamma^\lambda_{\mu\rho} g_{\rho\nu} + \Gamma^\lambda_{\nu\rho} g_{\rho\mu}$$

It follows that (Exercise):

$$\frac{\partial g_{\mu\nu}}{\partial x^\lambda} + \frac{\partial g_{\lambda\nu}}{\partial x^\mu} - \frac{\partial g_{\mu\lambda}}{\partial x^\nu} = 2g_{\mu\nu} \Gamma^\kappa_{\lambda\mu}$$

Define $g^{\mu\nu}$ as the inverse of $g_{\mu\nu}$, i.e.

$$g_{\mu\nu} g^{\nu\sigma} = \delta^{\sigma}_{\mu}$$
From above: \(\frac{\partial g_{\mu\nu}}{\partial x^k} + \frac{\partial g_{\mu\nu}}{\partial x^\lambda} - \frac{\partial g_{\mu\lambda}}{\partial x^k} = 2g_{\mu\nu} \Gamma^k_{\lambda\mu} \)

Contract with \(g^{\nu\sigma} \):

\[
g^{\nu\sigma} \left(\frac{\partial g_{\mu\nu}}{\partial x^k} + \frac{\partial g_{\mu\nu}}{\partial x^\lambda} - \frac{\partial g_{\mu\lambda}}{\partial x^k} \right) = 2g_{\mu\nu} g^{\nu\sigma} \Gamma^k_{\lambda\mu}
\]

\[
= 2 \delta^\sigma_k \Gamma^k_{\lambda\mu}
\]

\[
= 2 \Gamma^\sigma_{\lambda\mu}
\]

In other words,

\[
\Gamma^\sigma_{\lambda\mu} = \frac{1}{2} g^{\nu\sigma} \left(\frac{\partial g_{\mu\nu}}{\partial x^k} + \frac{\partial g_{\mu\nu}}{\partial x^\lambda} - \frac{\partial g_{\mu\lambda}}{\partial x^k} \right)
\]

In terms of the metric \(g_{\mu\nu} \), \(\Gamma^\sigma_{\lambda\mu} \) is also called the Christoffel symbol.

Consequences of the relations between \(\Gamma^\sigma_{\lambda\mu} \) and \(g_{\mu\nu} \):

1. The Eq. of motion of a freely falling particle automatically maintains the form of the proper time interval.

\[
\frac{d}{dt} \left(g_{\mu\nu} \frac{dx^\mu}{dt} \frac{dx^\nu}{dt} \right) = \frac{\partial g_{\mu\nu}}{\partial x^k} \frac{dx^k}{dt} \frac{dx^\mu}{dt} \frac{dx^\nu}{dt} + g_{\mu\nu} \frac{d^2 x^\mu}{dt^2} + g_{\mu\nu} \frac{dx^k}{dt} \frac{d^2 x^\mu}{dt^2} + g_{\mu\nu} \frac{d^2 x^\nu}{dt^2}
\]

\[
- \frac{\partial g_{\mu\nu}}{\partial x^k} \frac{dx^k}{dt} \frac{dx^\nu}{dt} - \frac{\partial g_{\mu\lambda}}{\partial x^k} \frac{dx^k}{dt} \frac{dx^\lambda}{dt} - \frac{\partial g_{\mu\nu}}{\partial x^k} \frac{dx^k}{dt} \frac{dx^\nu}{dt} - \frac{\partial g_{\mu\lambda}}{\partial x^k} \frac{dx^k}{dt} \frac{dx^\lambda}{dt}
\]
\[\frac{d}{dt} \left(g_{\mu\nu} \frac{dx^\mu}{dt} \frac{dx^\nu}{dt} \right) = \left[\frac{2g_{\kappa\lambda}}{\partial x^\lambda} - g_{\kappa\nu} \Gamma^\lambda_{\kappa\mu} - g_{\nu\kappa} \Gamma^\lambda_{\nu\mu} \right] \\
\times \left(\frac{dx^\kappa}{dt} \right)^2 \\
\]

The term in brackets vanishes by the relation between \(\Gamma^\lambda_{\kappa\mu} \) and \(g_{\kappa\nu} \). (Exercise)

Hence

\[\frac{d}{dt} \left(g_{\mu\nu} \frac{dx^\mu}{dt} \frac{dx^\nu}{dt} \right) = 0 \]

\[g_{\mu\nu} \frac{dx^\mu}{dt} \frac{dx^\nu}{dt} = -C, \quad \text{where} \quad C \quad \text{is a constant of the motion.} \]

If we choose \(C=1 \) then

\[\frac{dt^2}{d\tau^2} = -g_{\mu\nu} \frac{dx^\mu}{d\tau} \frac{dx^\nu}{d\tau} \]

everywhere along the trajectory.

Similarly, for a massless photon, \(C=0 \) as an initial condition, and

\[g_{\mu\nu} \frac{dx^\mu}{d\tau} \frac{dx^\nu}{d\tau} = 0 \]

during the trajectory.

(2) The law of motion of freely falling bodies satisfies a variational principle, namely that the proper time is stationary.

Define

\[T(A\to B) = \int_A^B \frac{d\tau}{dp} dp = \int_A^B \left(-g_{\mu\nu} \frac{dx^\mu}{d\tau} \frac{dx^\nu}{d\tau} \right)^{1/2} dp \]

where \(p \) is an arbitrary parameter along the trajectory, which begins at point \(A \) and ends at point \(B \).
Now let \(x^\mu(p) \rightarrow x^\mu(p) + \delta x^\mu(p) \) with \(\delta x^\mu = 0 \) at \(p \rightarrow p_0 \).

\[
\delta T(A \rightarrow B) = \frac{1}{2} \int_A^B \left\{ -g_{\mu \nu} \frac{d x^\mu}{dp} \frac{d x^\nu}{dp} \right\} \left[2 \frac{\partial g_{\mu \nu}}{\partial x^\lambda} \frac{dx^\lambda}{dt} \frac{dx^\mu}{dt} \frac{dx^\nu}{dt} \\
- 2 g_{\mu \nu} \frac{d x^\lambda}{d p} \frac{d x^\mu}{d p} \right] dp
\]

\[
\uparrow \text{ from symmetry of } \mu = \nu
\]

\[
\delta T(A \rightarrow B) = -\int_A^B \left[\frac{1}{2} \frac{\partial g_{\mu \nu}}{\partial x^\lambda} \frac{dx^\lambda}{dt} \frac{dx^\mu}{dt} \frac{dx^\nu}{dt} + g_{\mu \nu} \frac{d x^\lambda}{d t} \frac{d x^\lambda}{d t} \right] dt
\]

\[
\uparrow \text{ integrate by parts}
\]

\[
= -\int_A^B \left[\frac{1}{2} \frac{\partial g_{\mu \nu}}{\partial x^\lambda} \frac{dx^\lambda}{dt} \frac{dx^\mu}{dt} \frac{dx^\nu}{dt} - \left(\frac{\partial g_{\mu \nu}}{\partial x^\rho} \frac{d x^\rho}{d t} \frac{d x^\mu}{d t} \frac{d x^\nu}{d t} \right) \right] dt
\]

\[
= -\int_A^B \left[\frac{1}{2} \frac{\partial g_{\mu \nu}}{\partial x^\lambda} \frac{dx^\lambda}{dt} \frac{dx^\mu}{dt} \frac{dx^\nu}{dt} - g_{\mu \nu} \frac{d x^\rho}{d t} \frac{d x^\rho}{d t} \right] dt
\]

\[
= -\int_A^B \left[\frac{1}{2} \frac{\partial g_{\mu \nu}}{\partial x^\lambda} \frac{dx^\lambda}{dt} \frac{dx^\mu}{dt} \frac{dx^\nu}{dt} - g_{\mu \nu} \frac{d x^\rho}{d t} \frac{d x^\rho}{d t} \right] \frac{d x^\lambda}{d t} \frac{d x^\mu}{d t} \frac{d x^\nu}{d t} \right] dt
\]

\[
= -\int_A^B \left[\frac{1}{2} g_{\mu \nu} \left(\frac{\partial g_{\mu \rho}}{\partial x^\xi} - \frac{\partial g_{\nu \rho}}{\partial x^\xi} - \frac{\partial g_{\rho \mu}}{\partial x^\xi} + \frac{\partial g_{\rho \nu}}{\partial x^\xi} \right) \frac{d x^\rho}{d t} \frac{d x^\mu}{d t} \frac{d x^\nu}{d t} \right] \frac{d x^\lambda}{d t} \frac{d x^\mu}{d t} \frac{d x^\nu}{d t} \right] dt
\]

\[
= \int_A^B \left\{ \frac{d^2 x^\nu}{d t^2} + \Gamma^\nu_{\mu \rho} \frac{d x^\mu}{d t} \frac{d x^\rho}{d t} \right\} \Gamma^{\mu \rho \nu} d x^\lambda \frac{d x^\mu}{d t} \frac{d x^\nu}{d t} \right] dt
\]

\[
= 0 \text{ along freely falling trajectory, i.e.}
\]

\[
\delta T(A \rightarrow B) = 0
\]
We will return to the implications of the statement of the proper along trajectory shortly.

Consider a slowly moving particle, \(\frac{d^2x^I}{d\tau^2} \) negligible compared to \(\frac{d\tau}{d\xi} \), in a weak stationary gravitational field.

\[
\frac{d^2x^I}{d\tau^2} = \frac{d^2x^I}{d\xi^2} + \Gamma^I_{JK} \frac{dx^J}{d\xi} \frac{dx^K}{d\xi}
\]

\[
\approx \frac{d^2x^I}{d\xi^2} + \Gamma^I_{JK} \left(\frac{dt}{d\xi} \right)^2 \frac{\partial^2 \Phi}{\partial \xi^J \partial \xi^K} \quad \text{(stationary field)}
\]

\[
\Gamma^I_{00} = \frac{1}{2} g^{MN} \left(\frac{\partial g_{00}}{\partial x^M} + \frac{\partial g_{00}}{\partial x^N} - \frac{\partial g_{00}}{\partial x^N} \right)
\]

\[
= -\frac{1}{2} g^{MN} \frac{\partial \Phi_{00}}{\partial x^N}
\]

Suppose we adopt a nearly Cartesian coordinate system in the weak field, \(g_{00} = \gamma_{00} + h_{00} \), \(|h_{00}| \ll 1 \).

To first order in \(h_{00} \):

\[
\Gamma^I_{00} = -\frac{1}{2} g^{MN} \frac{\partial \Phi_{00}}{\partial x^N}
\]

The equations of motion become:

\[
\frac{d^2t}{d\xi^2} = 0 \quad \Rightarrow \quad \frac{dt}{d\xi} = \text{const.}
\]

\[
\frac{d^2x^I}{d\xi^2} = \frac{1}{2} \gamma^{ij} \frac{\partial \Phi_{00}}{\partial x^j} \frac{\partial x^i}{d\xi}^2 \quad \Rightarrow \quad \frac{d^2x^I}{d\xi^2} = \frac{1}{2} \nabla^2 \Phi_{00} \left(\frac{dt}{d\xi} \right)^2
\]

Divide the second eqn. by the constant \(\left(\frac{dt}{d\xi} \right)^2 \):

\[
\frac{d^2x^I}{d\xi^2} = \frac{1}{2} \nabla^2 \Phi_{00}
\]
Compared with Newtonian gravity,

\[\frac{d^2 \chi}{dt^2} = -V \Rightarrow h_{00} = -2\phi + \text{constant} \]

gravitational potential.

Choose such that \(\phi \to 0 \) at infinity, i.e.

\[\phi = \frac{-2m}{r} \]

\[\Rightarrow g_{00} = -(1+2\phi) \]

At the surface of the earth, \(|\phi| \approx 10^{-9} \)

sun \(10^{-6} \)

white dwarf \(10^{-4} \)

\[\Rightarrow \text{The assumption } |\phi| \ll 1 \text{ is self-consistent in typical physical situations} \]

(4) Time Dilation, Gravitational Redshift

Consider a clock in a gravitational field, though not necessarily in free fall.

In a locally inertial frame, the proper time between ticks is

\[\Delta T = \left(\frac{dS^x}{dS^x} \right)^{1/2} \]

In an arbitrary coordinate system,

\[\Delta T = \left(-g_{uu} \, dx^u \, dx^u \right)^{1/2} \]

In the rest frame of the clock, with the interval between clicks \(dt \),

\[\Delta T = \sqrt{g_{00}} \, dt \]

or

\[dt = \frac{\Delta T}{\sqrt{g_{00}}} \]
For a weak field with \(g_{00} = -(1+\phi) \),

\[
\frac{dt}{\sqrt{1+\phi}} \approx \Delta \tau (1-\phi) \quad \text{Time dilation}
\]

One can measure the time dilation by observing clocks from different points in space.

Suppose an atom emits light of some frequency \(\nu_2 \) for \(\phi \)
as observed at pt. 1, so that the time between crests of the wave is \(\Delta t_2 = \frac{1}{\nu_2} = \Delta \tau / \sqrt{g_{00}(x_2)} \).

If the same light is emitted at pt. 1 and observed at pt. 2 as observed at pt. 1, then the time between crests is

\[
\Delta t_1 = \frac{1}{\nu_1} = \Delta \tau / \sqrt{g_{00}(x_1)}
\]

The ratio of the frequency of light from pt. 2 observed at pt. 1, to that of light from pt. 1 observed at pt. 1 is

\[
\frac{\nu_2}{\nu_1} = \left(\frac{g_{00}(x_2)}{g_{00}(x_1)} \right)^{1/2}
\]

In the weak field limit, \(\frac{\nu_2}{\nu_1} = 1 + \frac{\Delta \nu}{\nu_1} \), \(g_{00} \approx -(1+\phi) \)

\[
\Rightarrow 1 + \frac{\Delta \nu}{\nu_1} \approx \left(\frac{1+2\phi(x_2)}{1+2\phi(x_1)} \right)^{1/2} \approx 1 + \phi(x_2) - \phi(x_1)
\]

\[
\frac{\Delta \nu}{\nu_1} = \phi(x_2) - \phi(x_1) \quad \text{Gravitational Redshift}
\]

Example: Light from the sun is redshifted by \(2 \) parts per million on the way to Earth.
Using the Mossbauer effect, Pound and Rebka measured the increase in frequency of light emitted by Fe57 falling 22.6 m on Earth, with

$$\Delta f \approx -2.5 \times 10^{-15}$$

The gravitational redshift plays an important role in astronomical observation of light from distant gravitational potential wells, in which case the redshift can be used to deduce the mass distribution at cosmological distances.
Comparison between Stationarization of Proper Time and Lagrangian Formalism

We have seen that the proper time elapsed along a trajectory is stationarized for freely falling trajectories (in the absence of external forces). In classical mechanics, the action functional is stationarized for trajectories that satisfy the equations of motion. There is a relation between these two stationarization principles.

In the weak-field Newtonian limit, the metric is related to the gravitational potential \(\phi(x) \), as we have seen, via \(\gamma_{00} \approx -(1+2\phi(x)) \).

We consider \(\phi \) as small (weak field), and assume \(\left| \frac{dx}{dt} \right| \ll 1 \) (slow compared to light).

Consider trajectories which begin at \(x_A \) at time \(t_A \), and end at \(x_B \) at time \(t_B \). The proper time is

\[
T(A \rightarrow B) \approx \int_{t_A}^{t_B} \sqrt{dt^2(1+2\phi)-\left(\frac{dx}{dt}\right)^2} + \text{higher order in } \phi, \frac{d^2x}{dt^2}.
\]

\[
= \int_{t_A}^{t_B} dt \left[(1+2\phi) - \left(\frac{dx}{dt}\right)^2 \right]^{1/2},
\]

\[
\approx \int_{t_A}^{t_B} dt \left(1 + \phi - \frac{1}{2} \left(\frac{d^2x}{dt^2} \right)^2 \right) \quad \text{(expanding the square root about 1)}.
\]
Multiplying by \(-m\), where \(m\) is the particle's mass,

\[
-mT(A \rightarrow B) \approx \int_{t_A}^{t_B} dt \left(\frac{1}{2} m \left(\frac{dx}{dt} \right)^2 - m \phi(x) - m \right).
\]

If \(T(A \rightarrow B)\) is stationary, so is \(-mT(A \rightarrow B)\).

Up to the addition of the constant \(-m(t_B - t_A)\), we recognize the action for a particle moving in a gravitational potential \(\phi(x)\):

\[
S = -mT(A \rightarrow B) \approx \int_{t_A}^{t_B} L dt + \text{constant} \quad + m(t_B - t_A)
\]

where \(L = \pm m \left(\frac{dx}{dt} \right)^2 - m \phi(x)\).

For example, for a particle in a uniform gravitational field with gravitational acceleration \(g\): \(\ddot{x} = g\), \(\phi = g z\), and \(L = \pm m \left(\frac{dx}{dt} \right)^2 - mg z\),

\[
T(A \rightarrow B) \approx \int_{t_A}^{t_B} \left[(1 + 2g z) - \left(\frac{\dot{x}}{c} \right)^2 \right]^{1/2} dt.
\]

The proper time is longer if the trajectory spends time at larger \(z\), but in order to reach larger \(z\), \(\left(\frac{\dot{x}}{c} \right)^2\) must also be larger somewhere along the trajectory, which reduces \(T\).

The parabolic trajectory which maximizes \(T\) is a compromise between minimizing \(\left(\frac{\dot{x}}{c} \right)^2\) while maximizing \(z\).