Physics 722, Spring 2008Problem Set 8: Gauge Theory, Functional IntegralsDue Thursday, April 24.

1. The Standard Model

The Standard Model is an $SU(3) \times SU(2) \times U(1)$ gauge theory. Consider one generation of quarks. The left-handed (chirality) quarks are in the fundamental representation of SU(3), the fundamental of SU(2), and have U(1) charge 1/6. The right-handed quarks are also in the fundamental of SU(3), but are SU(2) singlets. One SU(3) triplet of right-handed quark has U(1) charge 2/3, and another SU(3) triplet has U(1) charge -1/3.

a) What is the Lagrangian for the quarks and gauge fields, including the kinetic terms and gauge couplings? Be sure to clearly define all notation.

b) Are there any gauge-invariant mass terms? If not, explain.

c) Draw and evaluate the one-loop Feynman diagram(s) that contribute to the U(1) gauge-field self energy, regularizing in the $\overline{\text{MS}}$ scheme. Express your result in terms of the photon self-energy in QED, perhaps in the limit of vanishing electron mass.

d) Draw the one-loop Feynman diagrams that contribute to the SU(3) gauge boson (gluon) self-energy.

e) Evaluate the quark loops in part (d).

Comment: In the full Standard Model, Yukawa couplings involving the Higgs field give rise to quark masses. You are not supposed to include those couplings for this problem.

2. Functional Integral Quantization

Using the functional integral for a free complex scalar field ϕ with mass m, evaluate the following correlation functions:

$$\langle 0|\phi(x)|0\rangle, \ \langle 0|T\left[\phi(x)\phi(y)\right]|0\rangle, \ \langle 0|T\left[\phi(x)\overline{\phi}(y)\right]|0\rangle.$$