Physics 722, Spring 2008

Problem Set 7: C,P,T and Group Theory

Due Thursday, April 10.

1. C, P and T
a) Determine the action of C, P and T on the fermion bilinears $\bar{\psi} \psi, i \bar{\psi} \gamma^{5} \psi$, $\bar{\psi} \gamma^{\mu} \psi, \bar{\psi} \gamma^{\mu} \gamma^{5} \psi$, and $i \bar{\psi}\left[\gamma^{\mu}, \gamma^{\nu}\right] \psi$.
b) Convince yourself that any Lorentz invariant formed by fermion bilinears and/or space-time derivatives is invariant under the combined transformation CPT.
c) Convince yourself that QED is invariant under C, P, and T independently. How does the electromagnetic field A_{μ} transform?
d) What are the discrete symmetries of the following Lagrangians? (Write the transformations of the fields which leave the action invariant.)

$$
\begin{gathered}
\mathcal{L}=\bar{\psi}(i \not \partial-m) \psi+\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}+i g \bar{\psi} \gamma^{5} \psi \phi \\
\mathcal{L}=\bar{\psi}(i \not \partial-m) \psi+\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}+i g \bar{\psi} \gamma^{5} \psi \phi-\frac{M^{2}}{2} \phi^{2}+\frac{g_{3}}{3!} \phi^{3} \\
\mathcal{L}=\bar{\psi}(i \not \partial-m-e \mathscr{A}) \psi-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+i g \bar{\psi}\left[\gamma^{\mu}, \gamma^{\nu}\right] \psi F_{\mu \nu}
\end{gathered}
$$

2. Lie Groups

a) Show that if the generators of a Lie group satisfy the Lie algebra,

$$
\left[T^{a}, T^{b}\right]=i f^{a b c} T^{c}
$$

then the generators in the adjoint representation, defined by

$$
\left(T^{a}\right)_{b c}=-i f^{a b c},
$$

satisfy the Lie algebra.
b) Show that $T^{2}=T^{a} T^{a}$ commutes with all the group generators. As a consequence, $\left(T^{2}\right)_{i j}=C_{2}(r) \delta_{i j}$, where the constant $C_{2}(r)$ is called the quadratic Casimir of the representation r.
c) Suppose the generators are normalized so that

$$
\operatorname{Tr} T^{a} T^{b}=C(r) \delta^{a b}
$$

where the constant $C(r)$ depends on the representation r. Suppose the generators in the representation r are $d(r) \times d(r)$ matrices. Show that

$$
d(r) C_{2}(r)=d(G) C(r),
$$

where G stands for the adjoint representation.
d) Suppose the generators of $\mathrm{SU}(\mathrm{N})$ in the fundamental representation are normalized by

$$
\operatorname{Tr} T^{a} T^{b}=\frac{1}{2} \delta^{a b}
$$

Calculate the quadratic Casimir C_{2} in this representation.
e) Suppose the generators of $\mathrm{SU}(2)$ in the fundamental representation are normalized as in part (d). What is the quadratic Casimir C_{2} in the d dimensional representation of $\operatorname{SU}(2)$ as a function of d ?

Challenge: Assume the generators of $\mathrm{SU}(\mathrm{N})$ in the fundamental representation are as in part (d). Show that in the adjoint representation $C(G)=C_{2}(G)=N$.

