1. P, C and T
a) Determine the action of P, C and T on the fermion bilinears $\bar{\psi} \psi, i \bar{\psi} \gamma^{5} \psi$, $\bar{\psi} \gamma^{\mu} \psi, \bar{\psi} \gamma^{\mu} \gamma^{5} \psi$, and $i \bar{\psi}\left[\gamma^{\mu}, \gamma^{\nu}\right] \psi$.
b) Convince yourself that any Lorentz invariant formed by fermion bilinears and/or space-time derivatives is invariant under the combined transformation CPT.
c) Convince yourself that QED is invariant under C, P, and T independently. How does the electromagnetic field A_{μ} transform?
d) What are the discrete symmetries of the following Lagrangians? (Write the transformations of the fields which leave the action invariant.)

$$
\begin{gathered}
\mathcal{L}=\bar{\psi}(i \not \partial-m) \psi+\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}+g \bar{\psi} \psi \phi \\
\mathcal{L}=\bar{\psi}(i \not \partial-m) \psi+\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}+i g \bar{\psi} \gamma^{5} \psi \phi \\
\mathcal{L}=\bar{\psi}(i \not \partial-m-e \mathbb{A}) \psi-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+i g \bar{\psi}\left[\gamma^{\mu}, \gamma^{\nu}\right] \psi F_{\mu \nu}
\end{gathered}
$$

