Problem Set 2: Self-Energy and Dimensional Regularization Due Thursday, February 23.

1. Meson Self Energy

Consider the pseudoscalar meson-nucleon theory, with interaction $\mathcal{L}_I = g\overline{N}i\gamma^5 N\phi$. In the previous problem set you calculated the renormalized one-loop meson self energy,

$$\widetilde{\Pi}(k^2) = \Pi(k^2) - \operatorname{Re}\left[\Pi(\mu^2)\right] - \operatorname{Re}\left[\Pi'(\mu^2)\right] (k^2 - \mu^2).$$

When $k^2 > 4m^2$ the self-energy is imaginary. What is the sign of the imaginary part? Explain why the sign is consistent with the general analytic properties of the renormalized propagator.

2. Renormalization and Dimensional Regularization

Consider a real scalar field ϕ with Lagrangian density,

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{1}{2} \mu^2 \phi^2 - \frac{1}{6} g \phi^3.$$

Ignore the problem that this theory is unstable because the potential is unbounded below.

What is the maximum number of dimensions for which this theory is renormalizable?

In 6 dimensions, calculate the 1-loop diagram contributing to the selfenergy of the scalar field. Use dimensional regularization to identify the divergences as $d \rightarrow 6$.

Still in six dimensions, calculate the renormalized self energy satisfying $\widetilde{\Pi}(\mu^2) = 0$ and $\widetilde{\Pi}'(\mu^2) = 0$.