Physics 721, Fall 2023

Problem Set 8

Due Monday, November 6

1. Prove Wick's theorem for fermions: For any free fermionic fields $A_{i}\left(x_{i}\right)$,

$$
T\left[A_{1}\left(x_{1}\right) A_{2}\left(x_{2}\right) \cdots A_{n}\left(x_{n}\right)\right]=: A_{1}\left(x_{1}\right) \cdots A_{n}\left(x_{n}\right):
$$

+ all normal-ordered contractions.

The contractions are defined as in the bosonic case:

$$
\widehat{A(x) B}(y)=T[A(x) B(y)]-: A(x) B(y):
$$

The sign rules for exchange of fermionic fields are as follows:
$T[A(x) B(y) C(z)]=-T[A(x) C(z) B(y)]$, i.e. a minus sign for each exchange of neighboring fermion fields under the time-ordering symbol.
$: A(x) B(y) C(z):=-: A(x) C(z) B(y):$, i.e. a minus sign for each exchange of neighboring fermion fields under the normal-ordering symbol.
$: \overparen{A(x) B(y) C}(z) D(w):=-\widehat{A(x) C}(z): B(y) D(w):$, i.e. a minus sign for each exchange of neighboring fermion fields required to make contracted fields neighbors.
2. a) Using Wick's theorem evaluate the following correlation functions of free real scalar field $\phi(x)$, in terms of Feynman propagators $\Delta_{F}(x-y)=$ $\langle 0| T[\phi(x) \phi(y)]|0\rangle=\phi(x) \phi(y)$.

$$
\begin{array}{r}
\langle 0| T\left[\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right)\right]|0\rangle \\
\langle 0| T\left[\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right]|0\rangle
\end{array}
$$

b) Using Wick's theorem evaluate the following correlation functions of free complex scalar field $\phi(x)$, in terms of Feynman propagators $\Delta_{F}(x-y)$:

$$
\begin{array}{r}
\langle 0| T\left[\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right]|0\rangle \\
\langle 0| T\left[\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right)^{\dagger} \phi\left(x_{4}\right)^{\dagger}\right]|0\rangle
\end{array}
$$

