Physics 721, Fall 2023

Problem Set 6

Due Monday, October 23.

1. Practice with gamma matrices

Show that:

$$
\begin{gathered}
\gamma^{5} \gamma^{\mu} \gamma^{5}=-\gamma^{\mu} \\
\operatorname{Tr} \not \subset=0 \\
\operatorname{Tr} \not \subset \not \phi b=4 a \cdot b
\end{gathered}
$$

Similarly, compute $\operatorname{Tr} \phi \phi \phi \phi, \operatorname{Tr} \phi \phi \phi \phi d, \operatorname{Tr} \not \phi \gamma^{5}, \operatorname{Tr} \phi \not b \gamma^{5}, \operatorname{Tr} \phi \phi \phi \phi \gamma^{5}$, and $\operatorname{Tr} \phi \not \subset \phi d \gamma^{5}$.

The last of these will involve the constant antisymmetric tensor $\epsilon^{\mu \nu \rho \sigma}$. Use only the anticommutation relations of the 4×4 gamma matrices and general properties of the trace (cyclicity, etc.). Do not use an explicit representation of the matrices. Recall that $\gamma^{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}, \quad\left\{\gamma^{5}, \gamma^{\mu}\right\}=0$, and $\left(\gamma^{5}\right)^{2}=1$.

