Physics 721, Fall 2023 Problem Set 5 Due Monday, October, 16.

1. Chirality

Any Dirac spinor can be decomposed into a left-handed and a right-handed part by using the **chirality projection operators**,

$$P_L = \frac{1 - \gamma^5}{2}, \quad P_R = \frac{1 + \gamma^5}{2}.$$

Using the properties of γ^5 show that:

a)
$$P_L^2 = P_L$$
, $P_R^2 = P_R$, $P_L P_R = P_R P_L = 0$.

b) Given a Dirac spinor ψ define its left-handed part as $\psi_L \equiv P_L \psi$ and its right-handed part as $\psi_R \equiv P_R \psi$. Show that under a Lorentz transformation of ψ , the left and right-handed components of ψ transform independently. This implies that the Dirac spinor forms a **reducible representation** of the Lorentz group.

c) By acting on the Dirac equation $(i\partial - m)\psi = 0$ with P_L and with P_R , rewrite the Dirac equation in terms of a coupled set of equations for ψ_L and ψ_R .

d) Show that the equations for ψ_L and ψ_R decouple when $m \to 0$.

2. Majorana spinor fields

Peskin & Schroeder, Problem 3.4a,b.