Physics 721, Fall 2023

Problem Set 3

Due Monday, October 2.

1. 4-momentum as generator of spacetime translations

Consider a free real scalar field $\phi(x)$.
a) Express the normal-ordered Hamiltonian H and spatial momentum \mathbf{P} as integrals involving raising and lowering operators, and using the harmonic oscillator commutation relations show that:

$$
\begin{gathered}
e^{i H t} a_{\mathbf{k}} e^{-i H t}=a_{\mathbf{k}} e^{-i \omega_{\mathbf{k}} t} \\
e^{i H t} a_{\mathbf{k}}^{\dagger} e^{-i H t}=a_{\mathbf{k}}^{\dagger} e^{i \omega_{\mathbf{k}} t} \\
e^{-i \mathbf{P} \cdot \mathbf{x}} a_{\mathbf{k}} e^{i \mathbf{P} \cdot \mathbf{x}}=a_{\mathbf{k}} e^{i \mathbf{k} \cdot \mathbf{x}} \\
e^{-i \mathbf{P} \cdot \mathbf{x}} a_{\mathbf{k}}^{\dagger} e^{i \mathbf{P} \cdot \mathbf{x}}=a_{\mathbf{k}}^{\dagger} e^{-i \mathbf{k} \cdot \mathbf{x}} .
\end{gathered}
$$

b) Using this, show that,

$$
\phi(x)=e^{i(H t-\mathbf{P} \cdot \mathbf{x})} \phi(0) e^{-i(H t-\mathbf{P} \cdot \mathbf{x})}
$$

Hence, the 4-momentum operator (H, \mathbf{P}) generates spacetime translations of the field $\phi(x)$. This is a specific example of a general phenomenon: the conserved charge due to a symmetry generates the corresponding symmetry transformation on the fields.
c) Show that $\langle 0| \phi(x) \phi(y)|0\rangle=\langle 0| \phi(x-y) \phi(0)|0\rangle$.

2. Global $S O(2)$ symmetry of a pair of real scalars

Suppose $\phi_{1}(x)$ and $\phi_{2}(x)$ are a pair of real scalar fields with Lagrangian,

$$
\mathcal{L}=\frac{1}{2} \sum_{j=1}^{2}\left(\left(\partial_{\mu} \phi_{j}\right)^{2}-m^{2} \phi_{j}^{2}\right) .
$$

Each of the two fields has its own set of creation and annihilation operators. Decompose the fields in plane waves as,

$$
\phi_{j}(x)=\int \frac{d^{3} k}{(2 \pi)^{3} \sqrt{2 \omega_{\mathbf{k}}}}\left(a_{\mathbf{k}}^{(j)} e^{-i k \cdot x}+a_{\mathbf{k}}^{(j) \dagger} e^{i k \cdot x}\right)
$$

where $k^{0}=\omega_{\mathbf{k}}=\sqrt{\mathbf{k}^{2}+m^{2}}$.
Consider the symmetry transformation,

$$
\begin{aligned}
\phi_{1} & \rightarrow \cos \theta \phi_{1}+\sin \theta \phi_{2} \\
\phi_{2} & \rightarrow \cos \theta \phi_{2}-\sin \theta \phi_{1},
\end{aligned}
$$

for $0 \leq \theta<2 \pi$.
Calculate the normal-ordered charge associated with this symmetry in terms of a single $d^{3} k$ integral involving the creation and annihilation operators.
3. Particle number operator
a) Consider a free real scalar field $\phi(x)$. Show that the operator

$$
N \equiv \int \frac{d^{3} k}{(2 \pi)^{3}} a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}}
$$

counts the number of particles in a state.
b) Write N in terms of integrals involving the field $\phi(x)$ and its derivatives.

