Physics 721, Fall 2023
 \section*{Problem Set 2}

Due Mpnday, September 25.

1. The so $(3,1)$ Algebra

The generators of the rotation group in three dimensions, $\mathrm{SO}(3)$, satisfy the algebra $\left[T^{a}, T^{b}\right]=i \sum_{c} \epsilon^{a b c} T^{c}$. The matrices $T^{a}=\sigma^{a} / 2, a=1,2,3$, form a representation of the algebra.

The analogous relations for the six generators of Lorentz transformations $J^{\mu \nu}, \mu, \nu=0,1,2,3$, with $J^{\mu \nu}=-J^{\nu \mu}$, are

$$
\left[J^{\mu \nu}, J^{\rho \sigma}\right]=i\left(\eta^{\nu \rho} J^{\mu \sigma}-\eta^{\mu \rho} J^{\nu \sigma}-\eta^{\nu \sigma} J^{\mu \rho}+\eta^{\mu \sigma} J^{\nu \rho}\right)
$$

These commutation relations define the algebra so $(3,1)$. Using the properties of the Dirac γ-matrices, show that the generators of Lorentz transformations in the Dirac spinor representation,

$$
S^{\mu \nu}=\frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right]
$$

satisfy the commutation relations describing the Lorentz algebra.

2. Scalar Fields with Interactions

Consider a theory of a complex scalar field $\psi(x)$ and a real scalar field $\phi(x)$, with Lagrangian density,

$$
\mathcal{L}=\left|\partial_{\mu} \psi\right|^{2}-M^{2}|\psi|^{2}+\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{1}{2} m^{2} \phi^{2}-g \psi^{*} \psi \phi-\lambda \phi^{4}
$$

where M, m, g, and λ are constants.
a) What are the Euler-Lagrange equations for ψ, ψ^{*}, and ϕ ?
b) What is the 4 -vector current associated with the symmetry $\psi \rightarrow e^{i \theta} \psi$, $\psi^{*} \rightarrow e^{-i \theta} \psi^{*}$? What is the associated conserved charge?
c) What are the conserved energy and spatial momentum in terms of ψ and ϕ ? Is the energy bounded below for some choice of signs of the constants in the Lagrangian density?

