Physics 721, Fall 2023Problem Set 1Due Monday, September 18.

1. The Dirac Equation

a) In the absence of interactions, the Dirac equation for a particle at rest takes the form

$$i\hbar\frac{\partial\Psi}{\partial t} = mc^2\,\beta\,\Psi.$$

With the matrix β in the Dirac basis, find four independent solutions for $\Psi(t)$ with definite energy. You should find two solutions with positive energy and two with negative energy. (The energy is the eigenvalue of $i\hbar \partial/\partial t$.)

b) Including the coupling to electromagnetism, write the Dirac equation in terms of φ and χ , where

$$\Psi = e^{imc^2 t/\hbar} \begin{pmatrix} \varphi \\ \chi \end{pmatrix} \quad \text{in the Dirac basis.}$$

c) For the negative energy, nonrelativistic solutions to the Dirac equation, assume that φ and χ are slowly varying functions of time. For these solutions, write an approximate algebraic relation between φ and χ , and identify the large components of Ψ .

d) Assuming a weak, uniform, magnetic field **B**, derive a differential equation involving only the large components of Ψ , and **B**. Compare with the analogous equation for the positive-energy solutions described in class.

2. Tensors

Assume the matrix $\Lambda^{\mu}_{\ \nu}$ describes a Lorentz transformation, such that $x^{\mu} \to \Lambda^{\mu}_{\ \nu} x^{\nu}$.

a) If $T^{\mu\nu}$ and $B^{\mu\nu}$ are tensors under Lorentz transformations, prove that $T^{\mu\nu}B_{\nu\mu}$ and $T^{\mu\nu}B_{\mu\nu}$ are Lorentz scalars.

b) How does $T^{\mu\nu}B_{\mu}^{\ \alpha}$ transform? What kind of tensor is this?

c) If $\phi(x)$ is a scalar field, show that $\partial_{\mu}\phi \partial^{\mu}\phi$ transforms as a scalar field.

d) Show that as a tensor under Lorentz transformations, the Minkowski tensor $\eta_{\mu\nu}$ is Lorentz invariant.

e) Show that if under a Lorentz transformation $x^{\mu} \to \sum_{\nu} \Lambda^{\mu}_{\ \nu} x^{\nu}$, then

$$x_{\mu} \to \sum_{\nu} (\Lambda^{-1})^{\nu}{}_{\mu} x_{\nu}.$$