Physics 721, Fall 2023

Problem Set 1

Due Monday, September 18.

1. The Dirac Equation

a) In the absence of interactions, the Dirac equation for a particle at rest takes the form

$$
i \hbar \frac{\partial \Psi}{\partial t}=m c^{2} \beta \Psi
$$

With the matrix β in the Dirac basis, find four independent solutions for $\Psi(t)$ with definite energy. You should find two solutions with positive energy and two with negative energy. (The energy is the eigenvalue of $i \hbar \partial / \partial t$.)
b) Including the coupling to electromagnetism, write the Dirac equation in terms of φ and χ, where

$$
\Psi=e^{i m c^{2} t / \hbar}\binom{\varphi}{\chi} \quad \text { in the Dirac basis. }
$$

c) For the negative energy, nonrelativistic solutions to the Dirac equation, assume that φ and χ are slowly varying functions of time. For these solutions, write an approximate algebraic relation between φ and χ, and identify the large components of Ψ.
d) Assuming a weak, uniform, magnetic field \mathbf{B}, derive a differential equation involving only the large components of Ψ, and \mathbf{B}. Compare with the analogous equation for the positive-energy solutions described in class.

2. Tensors

Assume the matrix $\Lambda^{\mu}{ }_{\nu}$ describes a Lorentz transformation, such that $x^{\mu} \rightarrow$ $\Lambda_{\nu}^{\mu} x^{\nu}$.
a) If $T^{\mu \nu}$ and $B^{\mu \nu}$ are tensors under Lorentz transformations, prove that $T^{\mu \nu} B_{\nu \mu}$ and $T^{\mu \nu} B_{\mu \nu}$ are Lorentz scalars.
b) How does $T^{\mu \nu} B_{\mu}{ }^{\alpha}$ transform? What kind of tensor is this?
c) If $\phi(x)$ is a scalar field, show that $\partial_{\mu} \phi \partial^{\mu} \phi$ transforms as a scalar field.
d) Show that as a tensor under Lorentz transformations, the Minkowski tensor $\eta_{\mu \nu}$ is Lorentz invariant.
e) Show that if under a Lorentz transformation $x^{\mu} \rightarrow \sum_{\nu} \Lambda^{\mu}{ }_{\nu} x^{\nu}$, then

$$
x_{\mu} \rightarrow \sum_{\nu}\left(\Lambda^{-1}\right)^{\nu}{ }_{\mu} x_{\nu} .
$$

