Physics 721, Fall 2006 Jo Problem Set 4: The Feynman Propagator, Dirac Fields Due Tuesday, October 23.

1. Propagators for the Complex Scalar Field

Consider a free complex scalar field $\phi(x)$ with Lagrangian,

$$\mathcal{L} = |\partial_{\mu}\phi|^2 - m^2 |\phi|^2.$$

a) Using only the equations of motion and the equal time commutation relations, show that for a complex scalar with mass m,

$$\left(\partial_{\mu}\partial^{\mu} + m^{2}\right) \left\langle 0|T\left[\phi(x)\phi^{\dagger}(y)\right]|0\right\rangle = -i\,\delta^{4}(x-y)$$

where the derivatives are with respect to the coordinates x, and T is the time ordering symbol.

Hence, $i\langle 0|T\left[\phi(x)\phi^{\dagger}(y)\right]|0\rangle$ is a Green's function for the Klein-Gordon equation.

b) Decompose $\phi(x)$ as,

$$\phi(x) = \int \frac{d^3k}{(2\pi)^3 \sqrt{2\omega_{\mathbf{k}}}} \left(a_{\mathbf{k}} e^{-ik \cdot x} + b_{\mathbf{k}}^{\dagger} e^{ik \cdot x} \right),$$

where $k^0 = \omega_{\mathbf{k}} = \sqrt{\mathbf{k}^2 + m^2}$. Using the harmonic oscillator commutation relations, calculate:

- $\langle 0|T\left[\phi(x)\phi(y)\right]|0\rangle,\ \langle 0|T\left[\phi^{\dagger}(x)\phi^{\dagger}(y)\right]|0\rangle,\ \mathrm{and}\ \langle 0|T\left[\phi(x)\phi^{\dagger}(y)\right]|0\rangle.$
- 2. Spatial Momentum in the Dirac Field

Consider a free Dirac spinor field with mass m.

a) What is the conserved energy-momentum tensor $T^{\mu\nu}$ in terms of $\psi(x)$?

b) Using the plane wave decomposition of $\psi(x)$ and the harmonic oscillator anticommutation relations, calculate the normal-ordered spatial momentum in the Dirac field in terms of a single d^3k integral involving the creation and annihilation operators.

c) Explain why $a_{\mathbf{k}}^{r\dagger}$ and $b_{\mathbf{k}}^{r\dagger}$ create particles with momentum \mathbf{k} .