Physics 721, Fall 2006 Josh Erlich Problem Set 3: Quantized Scalar Fields Due Tuesday, October 10.

1. Harmonic oscillators from canonical quantization

Consider a free real scalar field $\phi(x)$ with Lagrangian,

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu}\phi\right)^2-\frac{m^2}{2}\phi^2.
$$

Decompose $\phi(x)$ as,

$$
\phi(x) = \int \frac{d^3k}{(2\pi)^3 \sqrt{2\omega_{\mathbf{k}}}} \left(a_{\mathbf{k}} e^{-ik \cdot x} + a_{\mathbf{k}}^\dagger e^{ik \cdot x} \right),
$$

where $k^0 = \omega_{\mathbf{k}} = \sqrt{\mathbf{k}^2 + m^2}$.

a) Solve for $a_{\mathbf{k}}$ and $a_{\mathbf{k}}^{\dagger}$ in terms of $\phi(x)$ and its conjugate momentum $\Pi(x)$.

b) Use the canonical commutation relations for $\phi(x)$ and $\Pi(x)$ to directly calculate the commutators $[a_{\mathbf{k}}, a_{\mathbf{k}'}], [a_{\mathbf{k}}^{\dagger}, a_{\mathbf{k}'}^{\dagger}]$ and $[a_{\mathbf{k}}, a_{\mathbf{k}'}^{\dagger}]$.

2. 4-momentum as generator of space-time translations

Consider a free real scalar field $\phi(x)$.

a) Express the normal-ordered Hamiltonian H and spatial momentum P as integrals involving raising and lowering operators, and using the harmonic oscillator commutation relations show that:

$$
e^{iHt} a_{\mathbf{k}} e^{-iHt} = a_{\mathbf{k}} e^{-i\omega_{\mathbf{k}}t}
$$

$$
e^{iHt} a_{\mathbf{k}}^{\dagger} e^{-iHt} = a_{\mathbf{k}}^{\dagger} e^{i\omega_{\mathbf{k}}t}
$$

$$
e^{-i\mathbf{P}\cdot\mathbf{x}} a_{\mathbf{k}} e^{i\mathbf{P}\cdot\mathbf{x}} = a_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{x}}
$$

$$
e^{-i\mathbf{P}\cdot\mathbf{x}} a_{\mathbf{k}}^{\dagger} e^{i\mathbf{P}\cdot\mathbf{x}} = a_{\mathbf{k}}^{\dagger} e^{-i\mathbf{k}\cdot\mathbf{x}}.
$$

b) Using this, show that,

$$
\phi(x) = e^{i(Ht - \mathbf{P} \cdot \mathbf{x})} \phi(0) e^{-i(Ht - \mathbf{P} \cdot \mathbf{x})}
$$

Hence, the 4-momentum operator (H, P) generates translations of the field $\phi(x)$ in space-time. This is a specific example of a general phenomenon: the conserved charge due to a symmetry generates the corresponding symmetry transformation on the fields.

3. Global $SO(2)$ symmetry of a pair of real scalars

Suppose $\phi_1(x)$ and $\phi_2(x)$ are a pair of real scalar fields with Lagrangian,

$$
\mathcal{L} = \frac{1}{2} \sum_{j=1}^{2} \left((\partial_{\mu} \phi_j)^2 - m^2 \phi_j^2 \right).
$$

Each of the two fields has its own set of creation and annihilation operators. Decompose the fields in plane waves as,

$$
\phi_j(x) = \int \frac{d^3k}{(2\pi)^3 \sqrt{2\omega_{\mathbf{k}}}} \left(a_{\mathbf{k}}^{(j)} e^{-ik \cdot x} + a_{\mathbf{k}}^{(j) \dagger} e^{ik \cdot x} \right),
$$

where $k^0 = \omega_{\mathbf{k}} = \sqrt{\mathbf{k}^2 + m^2}$.

Consider the symmetry transformation,

$$
\begin{array}{rcl}\n\phi_1 & \to & \cos \theta \, \phi_1 + \sin \theta \, \phi_2 \\
\phi_2 & \to & \cos \theta \, \phi_2 - \sin \theta \, \phi_1,\n\end{array}
$$

for $0 \leq \theta < 2\pi$.

Calculate the normal-ordered charge associated with this symmetry in terms of a single d^3k integral involving the creation and annihilation operators.