Physics 721, Fall 2006 Problem Set 3: Quantized Scalar Fields Due Tuesday, October 10.

1. Harmonic oscillators from canonical quantization

Consider a free real scalar field $\phi(x)$ with Lagrangian,

$$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \phi \right)^2 - \frac{m^2}{2} \phi^2.$$

Decompose $\phi(x)$ as,

$$\phi(x) = \int \frac{d^3k}{(2\pi)^3 \sqrt{2\omega_{\mathbf{k}}}} \left(a_{\mathbf{k}} e^{-ik \cdot x} + a_{\mathbf{k}}^{\dagger} e^{ik \cdot x} \right),$$

where $k^0 = \omega_{\mathbf{k}} = \sqrt{\mathbf{k}^2 + m^2}$.

a) Solve for $a_{\mathbf{k}}$ and $a_{\mathbf{k}}^{\dagger}$ in terms of $\phi(x)$ and its conjugate momentum $\Pi(x)$.

b) Use the canonical commutation relations for $\phi(x)$ and $\Pi(x)$ to directly calculate the commutators $[a_{\mathbf{k}}, a_{\mathbf{k}'}]$, $[a_{\mathbf{k}}^{\dagger}, a_{\mathbf{k}'}^{\dagger}]$ and $[a_{\mathbf{k}}, a_{\mathbf{k}'}^{\dagger}]$.

2. 4-momentum as generator of space-time translations

Consider a free real scalar field $\phi(x)$.

a) Express the normal-ordered Hamiltonian H and spatial momentum \mathbf{P} as integrals involving raising and lowering operators, and using the harmonic oscillator commutation relations show that:

$$e^{iHt} a_{\mathbf{k}} e^{-iHt} = a_{\mathbf{k}} e^{-i\omega_{\mathbf{k}}t}$$
$$e^{iHt} a_{\mathbf{k}}^{\dagger} e^{-iHt} = a_{\mathbf{k}}^{\dagger} e^{i\omega_{\mathbf{k}}t}$$
$$e^{-i\mathbf{P}\cdot\mathbf{x}} a_{\mathbf{k}} e^{i\mathbf{P}\cdot\mathbf{x}} = a_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{x}}$$
$$e^{-i\mathbf{P}\cdot\mathbf{x}} a_{\mathbf{k}}^{\dagger} e^{i\mathbf{P}\cdot\mathbf{x}} = a_{\mathbf{k}}^{\dagger} e^{-i\mathbf{k}\cdot\mathbf{x}}$$

b) Using this, show that,

$$\phi(x) = e^{i(Ht - \mathbf{P} \cdot \mathbf{x})} \phi(0) e^{-i(Ht - \mathbf{P} \cdot \mathbf{x})}$$

Hence, the 4-momentum operator (H, \mathbf{P}) generates translations of the field $\phi(x)$ in space-time. This is a specific example of a general phenomenon:

the conserved charge due to a symmetry generates the corresponding symmetry transformation on the fields.

3. Global SO(2) symmetry of a pair of real scalars

Suppose $\phi_1(x)$ and $\phi_2(x)$ are a pair of real scalar fields with Lagrangian,

$$\mathcal{L} = \frac{1}{2} \sum_{j=1}^{2} \left(\left(\partial_{\mu} \phi_{j} \right)^{2} - m^{2} \phi_{j}^{2} \right).$$

Each of the two fields has its own set of creation and annihilation operators. Decompose the fields in plane waves as,

$$\phi_j(x) = \int \frac{d^3k}{(2\pi)^3 \sqrt{2\omega_{\mathbf{k}}}} \left(a_{\mathbf{k}}^{(j)} e^{-ik \cdot x} + a_{\mathbf{k}}^{(j)\dagger} e^{ik \cdot x} \right),$$

where $k^0 = \omega_{\mathbf{k}} = \sqrt{\mathbf{k}^2 + m^2}$.

Consider the symmetry transformation,

$$\begin{aligned} \phi_1 &\to & \cos\theta \,\phi_1 + \sin\theta \,\phi_2 \\ \phi_2 &\to & \cos\theta \,\phi_2 - \sin\theta \,\phi_1, \end{aligned}$$

for $0 \leq \theta < 2\pi$.

Calculate the normal-ordered charge associated with this symmetry in terms of a single d^3k integral involving the creation and annihilation operators.