Physics 721, Fall 2006

Josh Erlich

Problem Set 1: The Dirac Equation

Due Tuesday, September 19.

1. Lorentz transformations

If $\Lambda^{\mu}_{\ \nu}$ describes a Lorentz transformation, such that

$$x^{\mu} \to \Lambda^{\mu}_{\ \nu} x^{\nu},$$

then how do the following transform under the Lorentz transformation:

- a) The Minkowski tensor, $\eta_{\mu\nu}$?
- b) $\partial_{\mu}\phi(x)\,\partial^{\mu}\phi(x)$, where $\phi(x)$ is a scalar field?
- c) $\frac{\partial}{\partial x^{\mu}} \left[\overline{\psi}(x) \gamma^{\mu} \psi(x) \right]$, where $\psi(x)$ is a Dirac spinor field?
- d) $\overline{\psi}(x)\gamma^{\mu}\gamma^{\nu}\psi(x)$?

Prove your results by explicit computation, using the properties of $\Lambda^{\mu}_{\ \nu}$ and the specified representations of the Lorentz group.

2. Dirac spinor representation

The generators of rotations in three dimensions, T^a , a=1,2,3 satisfy the SO(3) algebra, $\left[T^a,T^b\right]=i\,\epsilon^{abc}\,T^c$, where ϵ^{abc} is completely antisymmetric in $a,\ b$ and c, with $\epsilon^{123}=1$.

The analogous relations for the six generators of Lorentz transformations $J^{\mu\nu}$, $\mu, \nu = 0, 1, 2, 3$ with $J^{\mu\nu} = -J^{\nu\mu}$, are,

$$[J^{\mu\nu}, J^{\rho\sigma}] = i \left(g^{\nu\rho} J^{\mu\sigma} - g^{\mu\rho} J^{\nu\sigma} - g^{\nu\sigma} J^{\mu\rho} + g^{\mu\sigma} J^{\nu\rho} \right).$$

These commutation relations define the Lorentz algebra, SO(3,1). Using the properties of the Dirac γ -matrices, show that the generators of Lorentz transformations in the Dirac spinor representation,

$$S^{\mu\nu} = \frac{i}{4} \left[\gamma^{\mu}, \gamma^{\nu} \right],$$

satisfy the commutation relations describing the Lorentz algebra.

3. Chirality

Any Dirac spinor can be decomposed into a left-handed and a right-handed part by using the **chirality projection operators**,

$$P_L = \frac{1 - \gamma^5}{2}, \quad P_R = \frac{1 + \gamma^5}{2}.$$

Using the properties of γ^5 show that:

a)
$$P_L^2 = P_L$$
, $P_R^2 = P_R$, $P_L P_R = P_R P_L = 0$.

- b) Given a Dirac spinor ψ define its left-handed part as $\psi_L \equiv P_L \psi$ and its right-handed part as $\psi_R \equiv P_R \psi$. Show that under a Lorentz transformation of ψ , the left and right-handed components of ψ transform independently. This implies that the Dirac spinor forms a **reducible representation** of the Lorentz group.
- c) By acting on the Dirac equation $(i\partial \!\!\!/ m) \psi = 0$ with P_L and with P_R , rewrite the Dirac equation in terms of a coupled set of equations for ψ_L and ψ_R .
- d) Show that the equations for ψ_L and ψ_R decouple when $m \to 0$.
- 4. Solution to free Dirac equation with momentum in arbitrary direction

The solution to the Dirac equation for an electron moving in the \mathbf{x}^3 direction with momentum p^3 is, in the Weyl basis,

$$\psi(x) = u(p) e^{ip^{\mu}x_{\mu}},$$

where,

$$u(p) = \begin{pmatrix} \left[\sqrt{E+p^3} \left(\frac{1-\sigma^3}{2} \right) + \sqrt{E-p^3} \left(\frac{1+\sigma^3}{2} \right) \right] \xi \\ \sqrt{E+p^3} \left(\frac{1+\sigma^3}{2} \right) + \sqrt{E-p^3} \left(\frac{1-\sigma^3}{2} \right) \right] \xi \end{pmatrix},$$

and ξ is a 2-component Pauli spinor.

Show that the above solution can be written as,

$$u(p) = \begin{pmatrix} \sqrt{p^{\mu}\sigma_{\mu}} \xi \\ \sqrt{p^{\mu}\overline{\sigma}_{\mu}} \xi \end{pmatrix},$$

where $\sigma^{\mu} = (1, \vec{\sigma})$, $\overline{\sigma}^{\mu} = (1, -\vec{\sigma})$. In this form the solution is valid when the momentum is in an arbitrary direction.

2

5. Current conservation for the Dirac equation

Show that,

$$\begin{array}{lll} \rho & = & \psi^\dagger \psi \\ \vec{J} & = & c \, \psi^\dagger \, \vec{\alpha} \, \psi, \end{array}$$

satisfy the current conservation equation,

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \vec{J} = 0,$$

where ψ satisfies the Dirac equation for an electron coupled to a background electromagnetic field, and $\vec{\alpha}$ are the 4 × 4 matrices appearing in the Dirac equation.