Physics 721, Fall 2006 Josh Erlich Problem Set 1: The Dirac Equation Due Tuesday, September 19.

- 1. Lorentz transformations
- If $\Lambda^{\mu}_{\;\nu}$ describes a Lorentz transformation, such that

$$
x^{\mu} \to \Lambda^{\mu}_{\ \nu} \, x^{\nu},
$$

then how do the following transform under the Lorentz transformation:

- a) The Minkowski tensor, $\eta_{\mu\nu}$?
- b) $\partial_{\mu}\phi(x)\partial^{\mu}\phi(x)$, where $\phi(x)$ is a scalar field?
- c) $\frac{\partial}{\partial x^{\mu}} \left[\overline{\psi}(x) \gamma^{\mu} \psi(x) \right]$, where $\psi(x)$ is a Dirac spinor field?

d)
$$
\overline{\psi}(x)\gamma^{\mu}\gamma^{\nu}\psi(x)
$$
?

Prove your results by explicit computation, using the properties of Λ^{μ} ν and the specified representations of the Lorentz group.

2. Dirac spinor representation

The generators of rotations in three dimensions, T^a , $a = 1, 2, 3$ satisfy the SO(3) algebra, $[T^a, T^b] = i \epsilon^{abc} T^c$, where ϵ^{abc} is completely antisymmetric in a, b and c, with $\epsilon^{12\bar{3}} = 1$.

The analogous relations for the six generators of Lorentz transformations $J^{\mu\nu}$, μ , $\nu = 0, 1, 2, 3$ with $J^{\mu\nu} = -J^{\nu\mu}$, are,

$$
[J^{\mu\nu},J^{\rho\sigma}] = i (g^{\nu\rho}J^{\mu\sigma} - g^{\mu\rho}J^{\nu\sigma} - g^{\nu\sigma}J^{\mu\rho} + g^{\mu\sigma}J^{\nu\rho}).
$$

These commutation relations define the Lorentz algebra, SO(3, 1). Using the properties of the Dirac γ -matrices, show that the generators of Lorentz transformations in the Dirac spinor representation,

$$
S^{\mu\nu}=\frac{i}{4}\left[\gamma^\mu,\gamma^\nu\right],
$$

satisfy the commutation relations describing the Lorentz algebra.

3. Chirality

Any Dirac spinor can be decomposed into a left-handed and a right-handed part by using the chirality projection operators,

$$
P_L = \frac{1 - \gamma^5}{2}, \quad P_R = \frac{1 + \gamma^5}{2}.
$$

Using the properties of γ^5 show that:

a) $P_L^2 = P_L$, $P_R^2 = P_R$, $P_L P_R = P_R P_L = 0$.

b) Given a Dirac spinor ψ define its left-handed part as $\psi_L \equiv P_L \psi$ and its right-handed part as $\psi_R \equiv P_R \psi$. Show that under a Lorentz transformation of ψ , the left and right-handed components of ψ transform independently. This implies that the Dirac spinor forms a reducible representation of the Lorentz group.

c) By acting on the Dirac equation $(i\partial - m)\psi = 0$ with P_L and with P_R , rewrite the Dirac equation in terms of a coupled set of equations for ψ_L and ψ_R .

d) Show that the equations for ψ_L and ψ_R decouple when $m \to 0$.

4. Solution to free Dirac equation with momentum in arbitrary direction

The solution to the Dirac equation for an electron moving in the x^3 direction with momentum p^3 is, in the Weyl basis,

$$
\psi(x) = u(p) e^{ip^{\mu}x_{\mu}},
$$

where,

$$
u(p) = \begin{pmatrix} \left[\sqrt{E + p^3} \left(\frac{1 - \sigma^3}{2} \right) + \sqrt{E - p^3} \left(\frac{1 + \sigma^3}{2} \right) \right] \xi \\ \sqrt{E + p^3} \left(\frac{1 + \sigma^3}{2} \right) + \sqrt{E - p^3} \left(\frac{1 - \sigma^3}{2} \right) \right] \xi \end{pmatrix},
$$

and ξ is a 2-component Pauli spinor.

Show that the above solution can be written as,

$$
u(p) = \begin{pmatrix} \sqrt{p^{\mu} \sigma_{\mu}} \xi \\ \sqrt{p^{\mu} \overline{\sigma}_{\mu}} \xi \end{pmatrix},
$$

where $\sigma^{\mu} = (1, \vec{\sigma}), \ \overline{\sigma}^{\mu} = (1, -\vec{\sigma}).$ In this form the solution is valid when the momentum is in an arbitrary direction.

Show that,

$$
\rho = \psi^{\dagger} \psi \vec{J} = c \psi^{\dagger} \vec{\alpha} \psi,
$$

satisfy the current conservation equation,

$$
\frac{\partial \rho}{\partial t} + \nabla \cdot \vec{J} = 0,
$$

where ψ satisfies the Dirac equation for an electron coupled to a background electromagnetic field, and $\vec{\alpha}$ are the 4×4 matrices appearing in the Dirac equation.