Physics 721, Fall 2005Problem Set 8: Vector fieldsDue Thursday, November 17.

1. Massive electrodynamics

The most general Lagrangian density for the vector field including terms quadratic in the field with at most two derivatives is (up to the addition of total derivatives):

$$\mathcal{L} = -\frac{1}{2} \partial_{\mu} A_{\nu} \partial^{\mu} A^{\nu} + b \partial_{\mu} A_{\nu} \partial^{\nu} A^{\mu} + c A_{\mu} A^{\mu}.$$

(a) What are the Euler-Lagrange equations for this theory?

(b) Assume a plane wave solution of the form $A^{\mu}(x) = \varepsilon^{\mu}(k)e^{-ik\cdot x}$. What are the Euler-Lagrange equations in terms of ε^{μ} and k?

 $(A^{\mu}$ is real, but as usual we are describing two solutions at once – the real and imaginary parts of the plane wave. We can do this because the Euler-Lagrange equations are linear in this theory.)

(c) **Longitudinal mode:** Assume $\varepsilon^{\mu}(k) \propto k^{\mu}$. What are the Euler-Lagrange equations for this *ansatz* in terms of ε^{μ} ? Define $k_{\mu}k^{\mu} \equiv m_{L}^{2}$. What is the longitudinal mass m_{L} in terms of the parameters b and c in the Lagrangian?

(d) **Transverse modes:** Repeat part (c) assuming that $\varepsilon_{\mu}k^{\mu} = 0$. This time define $k_{\mu}k^{\mu} \equiv m_T^2$. What is m_T ?

(e) The longitudinal mode will not propagate if $m_L \to \infty$. What choice of *b* accomplishes this? Make that choice and rewrite \mathcal{L} in terms of A^{μ} , m_T , and $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$. This is the Proca Lagrangian of massive electrodynamics. You should recover Maxwell's theory if you take $m_T \to 0$.

2. Compton scattering

Calculate the scattering amplitude at $\mathcal{O}(e^2)$ for Compton scattering in QED, $e^- + \gamma \rightarrow e^- + \gamma$. Draw the Feynman diagrams and label the appropriate quantum numbers on all external lines.