Problem Set 3: Quantized Scalar Fields

Due Tuesday, September 27

1. Lorentz invariant measure

Consider a boost in the $\hat{\mathbf{x}}_{3}$ direction which acts on 4 -vectors as $a^{\mu} \rightarrow a^{\mu \prime}=$ $\Lambda^{\mu}{ }_{\nu} a^{\nu}$, where,

$$
\Lambda=\left[\begin{array}{cccc}
\gamma & 0 & 0 & \gamma v \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\gamma v & 0 & 0 & \gamma
\end{array}\right], \quad \gamma=\left(1-v^{2}\right)^{-1 / 2}
$$

Show that the volume element,

$$
\frac{d^{3} k}{2 \omega}=\frac{d^{3} k^{\prime}}{2 \omega^{\prime}},
$$

where \mathbf{k} and \mathbf{k}^{\prime} are 3 -momenta related by a boost in the $\hat{\mathbf{x}}_{\mathbf{3}}$ direction, and ω and ω^{\prime} are the associated energies. Use only the standard relation for change of volume element under a change in coordinates.

The volume element is obviously invariant under rotations, and under boosts in an arbitrary direction. Hence, it is Lorentz invariant, and when integrated against a scalar function will yield a Lorentz invariant quantity.

2. Green's functions and time ordered products

The time-ordered product of two fields, $\phi_{1}(x)$ and $\phi_{2}(x)$, is defined by,

$$
\begin{aligned}
T\left[\phi_{1}(x) \phi_{2}(y)\right] & =\phi_{1}(x) \phi_{2}(y) \text { if } x_{0}>y_{0} \\
& =\phi_{2}(y) \phi_{1}(x) \text { if } x_{0}<y_{0}
\end{aligned}
$$

Using only the field equation of motion and the equal time commutation relations, show that for a free real scalar field of mass m,

$$
\left(\partial_{\mu} \partial^{\mu}+m^{2}\right)\langle 0| T[\phi(x) \phi(y)]|0\rangle=-i \delta^{4}(x-y)
$$

Hence, $i\langle 0| T[\phi(x) \phi(y)]|0\rangle$ is a Green's function for the Klein-Gordon equation. It is also known as the Feynman propagator for the real scalar field, and will be important to us shortly.

