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Notes: Massive Electrodynamics in a compact extra dimension

Consider a world in 4+1 dimensions, in which one of those dimensions is com-
pactified on a circle of size R. Imagine that a massive vector field exists in this
world.

Comparison to the scalar field on a circle

The massive vector field with an extra circle dimension has the same Lagrangian
as in the case of noncompact dimensions:

L = −
1

4
Fµν F

µν −
m2

2
AµA

µ,

and hence also the same equations of motion,

∂µF
µν = m2 Aν,

and satisfies the Bianchi identity,

εµ0···µ4∂µ2
Fµ3µ4

= 0.

The difference between the noncompact and compact situations is in the bound-
ary conditions. Just as we have discussed in the case of the scalar field, wavenum-
bers in compact dimensions take discrete values. In the case of the vector field,
though, something more interesting happens.

Recall that in an extra circle dimension a scalar field of mass m has the inter-
pretation of a tower of 3+1 dimensional scalar fields with masses,

m2
n = m2 +

n2

R2
.

In the noncompact case there is one mode per wavenumber (i.e. one degree of
freedom), and the same is true in the compact case (except that a component of
the wavenumber is discrete).

In the case of the vector field, we might expect to find a tower of massive vector
fields, but that can’t be the whole story. Recall that the (transverse) massive vector
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field in d + 1 noncompact dimensions has d degrees of freedom, i.e. d different
solutions for each wavenumber. So a vector in d dimensions has only d− 1 degrees
of freedom. That means that if there is to be just a tower of d-dimensional vector
fields, then we’re one degree of freedom short from what we started with.

Just by counting degrees of freedom, then, it seems plausible that in a compact
extra dimension the massive vector field should become a tower of massive vector
fields in addition to a tower of scalar fields. Let’s see how this works.

Plane waves on a circle

Recall that by differentiating the equations of motion we obtain the Lorentz
gauge condition,

∂νA
ν = 0,

so that the equation of motion becomes the Klein-Gordon equation for each com-
ponent of Aν:

24+1A
ν = m2 Aν.

A complete set of solutions are plane waves:

Aν = εν exp i

[

ωt − k · x−
n

R
y

]

,

where by k and x we mean the three spatial components in the noncompact di-
mensions, and y ∈ (0, 2πR) is the coordinate in the circle dimension.

The polarization vector εν is independent of x, and for the time being we won’t
normalize it. From the Klein-Gordon equation we obtain the dispersion relation
just as for the scalar field,

ω2 − k2 = m2 +
n2

R2
.

From the Lorentz gauge condition we find that the plane waves are transverse,

ε · k = −ω ε0 + εik
i + εy

n

R
= 0,

where the index i is summed over the noncompact spatial coordinates, i = 1, 2, 3.
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The general solution to the equations of motion can be decomposed into the
complete set of plane wave solutions. Hence,

Aν(t,x, y) =
∫ d3k

(2π)3

∞
∑

n=−∞

1

2πR
ενn(k) exp i

[

ω(k)t − k · x−
n y

R

]

,

where,

ω(k)2 = k2 +m2 +
n2

R2
,

and,
ενn kν = 0.

Decomposition into 3+1 dimensional fields

We can independently consider the modes with εy = 0 and the modes with
εik

i = 0 (in a particular coordinate frame, say the rest frame of the plane wave).
Any solution can be written as a sum of such modes.

With εy = 0, the Klein-Gordon equation acting on the plane wave solutions take
the form,

25A
ν = 24A

ν −
n2

R2
Aν = m2 Aν , ν = 0, . . . , 3.

The Lorentz gauge condition for the modes with εy = 0 is,

3
∑

µ=0

∂µA
µ = 0.

These last two equations are the equations of motion for the massive vector field
in 3 + 1 dimensions. Hence, the plane wave solutions with εy = 0 are the same as
those for a tower of massive vector fields in 3 + 1 dimensions with masses,

m2
n = m2 +

n2

R2
.

But now we can see where the extra degree of freedom went – it is just the
solutions with εiki = 0 and εy 6= 0, which we have not considered yet. The vector
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field still satisfies the Klein-Gordon equation, but only the time-component and
the y-component are nonvanishing.

From the 3+1 dimensional perspective, Ay is a scalar under Lorentz transfor-
mations, so the Lorentz gauge condition simply relates A0 to this scalar. (Recall
also from our discussion of the Hamiltonian that A0 is not an independent field,
anyway.) The Klein-Gordon equation for Ay is the equation of motion for a scalar
field, so what we have found is that the modes with εik

i = 0 are equivalent to a

tower of scalar fields with the same masses as the tower of vector fields.

Notice that in the rest frame, the scalar mode with εiki = 0 has εµ ∝ kµ for
µ = 0, 1, 2, 3. Hence, such modes are sometimes thought of as longitudinal modes of
the vector field, and Ay is sometimes referred to as the longitudinal component

or scalar component of the vector field.

Coupling to sources

The equations of motion in the presence of a source are,

∂µF
µν = m2 Aν − 4πJν.

As a 3+1 dimensional observer, let’s say you create a conserved current with
Jy = 0, such that,

∂µJ
µ = ∂tρ+ ∇3 · J = 0.

Then we could solve the equations of motion in the presence of the source, and
we would find that we can consistently take Ay = 0 in the solution because J y = 0.
The solution for Aµ at large distances from the source (compared to R) will be
approximately the 3 + 1 dimensional solution. The scalar component Ay is not
turned on by the source.

However, if we turn on a 4+1 dimensional conserved current with a nonvanishing
component in the circle direction, i.e.

∂µJ
µ = ∂tρ+ ∇3 · J+ ∂yJ

y = 0,
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then to a 3+1 dimensional observer it would appear that the current is not con-
served:

3
∑

µ=0

∂µJ
µ = −∂yJ

y.

In this case, because J y 6= 0, the longitudinal component Ay is turned on by the
source. From a 3+1 dimensional perspective, we are learning that the longitudinal
component only vanishes if the current is conserved. This is consistent with the
interpretation of Ay as the longitudinal component of the vector field. Consider
a 3+1 dimensional massive vector field. Taking a derivative of the equations of
motion in the presence of a source, we have,

∂ν (∂µF
µν) = ∂ν

(

m2 Aν − 4πJν
)

= 0.

If the current is conserved, so that ∂νJ
ν = 0, then the solutions satisfy the

Lorentz gauge condition, and hence also the condition for transverseness. If the
current is not conserved, then there is no solution satisfying the Lorentz gauge
condition, so that the longitudinal modes must be turned on in the solution.

We have not yet spoken about gauge invariance, so this is for Jackson experts
(and for the rest of you to look back at later): One can show that if the current is
made out of fields coupled to Aµ in a gauge invariant way, then the Lorentz gauge
condition must be satisfied: ∂µA

µ = 0. As a result, by the equations of motion
it follows that the current is conserved in such a theory: ∂µJ

µ = 0. So it seems
as though gauge invariance in a compact extra dimension does not imply gauge
invariance from the lower dimensional perspective. We will revisit this point again.

Coming up next...

Our next topic will be massless electrodynamics in compact extra dimensions.
We will have to face gauge invariance in all its glory, so I recommend that you
remind yourself what gauge invariance is before then. Your favorite book on elec-
trodynamics would serve just fine.
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