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Notes: Electrodynamics in d+ 1 dimensions

Maxwell’s remarkable theory

It is remarkable that James Clerk Maxwell’s (1831-1879) theory of electrody-
namics has survived the revolutions of special relativity and quantum mechanics.
It was Maxwell who not only described the forces of electricity and magnetism,
but also suggested that light, which was measured to propagate at roughly the
same speed as electromagnetic signals, was in fact a manifestation of the electro-
magnetic field. Prior to the observation of the coincidence of these speeds there
was no reason to suspect there was any relation between these seemingly different
phenomena. The measured equivalence of these speeds was too much for Maxwell
to accept as a coincidence, and the rest, as they say, is history.

It is interesting to note that the theory of electricity, magnetism and light is a
wonderful example of the modern quest for unification and beauty in the laws of
physics. Electricity and magnetism, which at first appear to be independent forces,
are described by a single 4-vector field in 3+1 dimensions. Furthermore, Maxwell
conjectured that light is a propagating wave of the same field because it was too
unnatural to conceive that these things should all propagate at the same speed
without there being some relation between them.

We will not discuss this further except perhaps much later in this course, but
there is also a duality in Maxwell’s equations: if you take E → B and B → −E,
the source-free Maxwell’s equations are invariant. This duality in the description
of the electromagnetic field is similar to the dualities often discussed in the context
of string theory and supersymmetric gauge theories.

A modern derivation of Maxwell’s theory

We will rewrite history and derive Maxwell’s theory of electromagnetism from
a modern perspective. We start with the assumptions that 1) the electromagnetic
interaction is carried by fields, and 2) the theory is Lorentz invariant. Maxwell was
not aware of the symmetry structure of his theory, so he could not have derived his
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theory the way we will.

We have already studied scalar fields, but we found that such fields are attractive
between like charges so a collection of scalar fields can’t be the right theory of
electromagnetism.

The next simplest field transforming covariantly under Lorentz transformations
is the vector field, Aµ. So we will derive the most general theory of a vector field.
We proceed by constructing an action which satisfies three basic properties:

• Lorentz invariance

• No more than two derivatives

• At most quadratic in the fields

The first condition is obvious (although it was unknown to Maxwell), and means
that the action should be a Lorentz scalar. The second condition implies that the
field has ordinary kinetic terms so that a complete set of initial conditions requires
knowledge of just the fields and their time derivatives, and not higher derivatives.
(We will clarify this later when we discuss the Hamiltonian.) The last requirement
is so that the Euler-Lagrange equations will be linear in the field, and is included
in the list of requirements for simplicity. If we can’t formulate an appropriate
theory satisfying the last two of these requirements we can then try to relax these
conditions.

A complete set of terms satisfying these requirements is:
No derivatives: AµAµ

One derivative: None by Lorentz invariance (except in 3 dimensions)
Two derivatives: ∂µA

ν ∂νA
µ, ∂µA

µ ∂νA
ν, ∂µA

ν ∂µAν

The first two of the two-derivative terms listed above are equivalent up to addi-
tion of a total derivative, so we only need to keep one of those terms. (The action
is an integral of the Lagrangian, so total derivatives don’t contribute.)

Three dimensional electrodynamics is unique. In three dimensions the term
Aµ∂νAρ ε

µνρ is Lorentz invariant and can be added to the Lagrangian. It is called
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the Chern-Simons term. Here, εµνρ is the completely antisymmetric tensor with
ε123 = +1, and is invariant under Lorentz transformations connected to the identity.

In d + 1 dimensions the analogous invariant tensor is εµ1···µd+1, defined with
ε012···d = +1. The components of εµ1···µd+1 vanish except when all the indices take
different values. Lowering all the indices with the Minkowski metric, we obtain
ε012···d = −1. There are terms analogous to the Chern-Simons term in any odd
dimension (≥ 3), but in more than three dimensions there are more derivatives and
more than two factors of the field.

The Chern-Simons term is a total derivative, yet it has the interesting conse-
quence of contributing topologically to the photon mass. We will not study the
details of this interesting theory any further in this course.

Back to the generic theory, we can normalize Aµ to fix any one of the terms in
the Lagrangian density (up to a sign). Hence, the generic Lagrangian satisfying
our requirements is:

L = ±
1

2
(∂µAν ∂

µAν + a∂µA
µ ∂νA

ν + bAµA
µ) .

In d + 1 dimensions there are d + 1 Euler-Lagrange equations: one for each
component of Aµ. They are,

0 = ∂µ





∂L

∂(∂µAν)



−
∂L

∂Aν

= ± (∂µ(∂
µAν + a∂νA

µ)− bAν) .

We look for plane wave solutions times a polarization vector εµ independent
of x:

Aµ(x) = εµ(k) e−ik·x,

where k · x = −ωt+ k · x. We are using notation where x and k represent (d+ 1)-
component vectors, and we reserve the notation x and k for the spatial components.

Plugging the plane wave ansatz into the equations of motion, we obtain:

0 = (−ikµ) ·
(

−ikµ εν e
−ik·x + a(−ikν) ε

µ e−ik·x
)

− b εν e
−ik·x
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= e−ik·x
(

−k2εν − a (ε · k) kν − b εν
)

.

= e−ik·x
(

(ω2 − k2)εν − a ε · k kν − εν
)

.

We can distinguish two different kinds of modes:

• Longitudinal modes: εν ∝ kν

• Transverse modes: ε · k = 0

These conditions are Lorentz invariant. We will see that for b 6= 0 in the La-
grangian the modes are massive, so that it makes sense to speak about the rest
frame of the wave. In the rest frame, the longitudinal condition is ε ∝ (ω,0). This
is a rotational scalar, and the longitudinal mode can be thought of as a scalar field.

The transverse modes in the rest frame satisfy ε0 ω = 0, so only the spatial com-
ponents ε are nonvanishing. These d components form a vector under d-dimensional
rotations, and will be the modes of interest for us as they are manifestly different
than the scalar mode.

We will consider the two kinds of modes separately. First, the longitudinal mode:
The equations of motion with εν ∝ kν are:

(ω2 − k2) kν + a (ω2 − k2) kν − b kν = 0,

so that,

(ω2 − k2) =
b

1 + a
≡ m2

L.

Hence, the longitudinal mode has the dispersion relation for a field of mass mL.
It is equivalent to a scalar field with the same mass.

Next, the transverse mode: Setting ε · k = 0 in the equations of motion,

(ω2 − k2) εν − b εν = 0,

so that,
ω2 − k2 = b ≡ m2

T .
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Hence, the transverse modes have the dispersion relation for waves of mass mT .
Notice that by the equations of motion for the transverse mode,

∂µ∂
µAν = m2

T Aν,

each component of the transverse vector field satisfies the Klein-Gordon equation
for a field of mass mT .

Decoupling of the longitudinal mode

The longitudinal mode is a scalar which we would prefer to separate from the rest
of our discussion of the vector field. We can arrange for there to be no nonvanishing
longitudinal solution if we choose a = −1 in the Lagrangian. Roughly speaking, the
longitudinal mass mL → ∞ so that the longitudinal mode becomes inaccessible.
Then we redefine the transverse mass to be m, so that b = m2.

The Lagrangian for the transverse vector field is then,

L = ±
1

2

(

∂µAν ∂
µAν − ∂µA

µ ∂νA
ν +m2 AµA

µ
)

.

We can simplify the form of the Lagrangian by defining the field strength
tensor,

Fµν = ∂µAν − ∂νAµ.

The field strength is antisymmetric under exchange of its indices. Up to addition
of a total derivative, the Lagrangian can be written as,

L = ±





1

4
FµνF

µν +
m2

2
AµA

µ



 .

This is the Proca Lagrangian. It describes a massive vector field. In terms of
the field strength, the equations of motion for the massive vector field are,

∂µF
µν = m2 Aν.

In terms of Aµ, the following is an identity, known as the Bianchi identity:

εµ1µ2···µd+1 ∂µ1
Fµ2µ3

= 0.
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This follows from the antisymmetry of εµ1···µd+1 and the symmetry of the mixed
partial derivatives. While it is an identity in terms of Aν, in terms of the field
strength it appears as a constraint.

Recall that the field due to a source falls off exponentially with distance from
the source for a massive field. Electromagnetism is a long range force, so we take
the mass m→ 0 to obtain a theory that could describe electromagnetism. This is,
in fact, the Lorentz-covariant form of Maxwell’s theory.

Specifying initial conditions

Expanding the Lagrangian density into terms involving time components and
those only involving spatial components,

L = ±
1

2

(

F0iF
0i +

1

2
FijF

ij +m2 AiA
i +m2 A0A

0

)

.

The (0i) component of the field strength is F0i = ∂0Ai − ∂iA0. The canonical
momentum conjugate to the field Ai is:

Πi ≡
∂L

∂(∂0Ai)
= ±F 0i.

But, the canonical momentum conjugate to A0 is,

Π0 ≡
∂L

∂(∂0A0)
= 0 !

The Hamiltonian is expressed in terms of the canonical momenta, so for con-
sistency we should check that we do not need to know A0 or ∂0A

0 in order to
completely specify the dynamics. More precisely, a complete set of initial condi-
tions should be specified by Ai and Πi in order for the Hamiltonian to consistently
describe the dynamics.

Luckily, this is the case. Maxwell’s equations are a set of linear second order
partial differential equations, so certainly the collection of A0, ∂0A

0, Ai, ∂0A
i supply

a complete set of initial value data.
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Recall that the equations of motion are:

∂µF
µν = m2 Aν.

Taking another derivative, we have,

∂ν∂µF
µν = m2 ∂νA

ν.

But the left hand side vanishes because F µν is antisymmetric under µ↔ ν and the
mixed partial derivatives are symmetric.

So we conclude that for the massive vector field,

∂νA
ν = 0.

This is often called the Lorentz gauge condition. It is a necessary condition for
the free massive vector field, but is not required in massless electrodynamics.

Notice also that with the Lorentz condition the equations of motion are,

m2Aν = ∂µF
µν

= ∂µ (∂
µAν − ∂νAµ)

= ∂µ∂
µAν

Hence, each component of Aν satisfies the Klein-Gordon equation for a field of
mass m.

From the Lorentz gauge condition,

∂µA
µ = 0→ ∂0A

0 = −∂iA
i.

Hence, knowledge of Ai(x) at a fixed time determines ∂0A
0 at that time.

From the time component of Maxwell’s equations,

∂iF
i0 = m2A0 → A0 =

1

m2
∂iF

i0.

Hence, knowledge of Πi = ∓F i0 at an initial time determines A0 at that time.
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From the definition of the field strength,

F0i = ∂0Ai − ∂iA0 → ∂0 Ai = F0i + ∂iA0.

Hence, knowledge of Πi(x) and A0(x) at an initial time determine ∂0Ai at that
time.

So we have shown that, thankfully, Ai and Πi provide a complete set of initial
value data for solutions to the theory. This means it is okay that Π0 vanishes. A0

is not an independent field, and is specified once we know Ai. The vanishing of Π0

is directly related to the fact that we have eliminated the longitudinal mode from
the theory.

The Hamiltonian for the vector field

The Hamiltonian density is given by,

H =
∑

i

Πi ∂0Ai − L

= ±F 0i ∂0Ai − L

= ±F 0iF0i ± F 0i ∂iA0 − L

= ±F 0iF0i ∓
(

∂i F
0i
)

A0 − L+ tot. deriv.

In the last line we anticipated integrating by parts by adding a total derivative
that is irrelevant when we integrate over ddx to obtain the Hamiltonian. Now recall
that from the equations of motion,

A0 = −
1

m2
∂i F

0i.

Hence,

H = ±F 0iF0i ±m2 A0 A
0 − L

= ±
1

2

(

F0iF
0i −

1

2
FijF

ij −m2 AiA
i +m2 A0A

0

)

.

Considering that the indices are lowered with the Minkowski metric, ηµν =
diag(−1, 1, 1, . . .), you can check that each term in the parentheses is negative.
Hence, the appropriate choice of overall sign in order for the Hamiltonian to be
bounded below is the negative sign.
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So, we have now completely determined the Lagrangian for massive electrody-
namics:

L = −
1

4
FµνF

µν −
m2

2
AµA

µ.

Number of degrees of freedom

In d+1 dimensions, how many propagating degrees of freedom are there? Equiva-
lently, how many independent plane wave solutions are there for a given wavevector
k?

Well, the plane wave solutions were of the form, Aν = εν e−ik·x. The solutions
are transverse, so there is one condition ε · k = 0. Hence, there are (d+ 1)− 1 = d
independent polarizations of the massive vector field. The missing polarization is,
of course, the longitudinal polarization which we have eliminated from the theory
by our choice of the Lagrangian.

Electromagnetism as a vector field

The electromagnetic field propagates at long distances. (That is why your hair
is attracted to a rubber balloon.) As a result, the mass of the electromagnetic field
must be very small. Recall that each component of the massive vector field satisfies
the Klein-Gordon equation, so that the field falls off exponentially with distance
unless m→ 0.

Incidentally, this is why the weak interactions are a short ranged interaction.
The carriers of the interaction are the W and Z bosons, which are vector fields
with masses around 80 GeV/c2 and 91 GeV/c2, respectively. Their masses set the
distance scale beyond which the weak interactions are unimportant.

So, in Maxwell’s theory of electrodynamics m = 0. Coupling to a source is
analogous to how we coupled the scalar field to a source. The difference is that
now the source is a vector with d+1 components, J ν, and is called the current. We
identify the time-component of the current with the usual electric charge density ρ,
and the spatial components with the spatial electric current J, so that J ν ∼ (ρ,J).
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The current appears in Maxwell’s equations in the following way:

∂µ F
µν = −4π Jν

εµ1...µd+1 ∂µ1
Fµ2µ3

= 0.

The source appears only in the first of the equations because the second is a
constraint equation, and does not reflect the dynamics. Maxwell’s equations in the
presence of a source follow from the Lagrangian density,

L = −
1

4
FµνF

µν + 4π Jν A
ν.

To relate the covariant form of Maxwell’s equations to the version of Maxwell’s
equations we first learn about in physics courses, we identify the components of the
field strength F µν in 3+1 dimensions with the electric and magnetic fields E and
B. The identifications is,

Ei = Fi0

Bi =
1

2
εijk F

jk.

This identification only makes sense in 3 + 1 dimensions, and we will generalize
it in a little while. Recall that the ε symbol is the totally antisymmetric tensor,
which in this case is invariant under rotations. It is normalized by ε12···d = +1.
Lowering the indices with the Euclidean metric δij, we also have ε12···d = +1.

In order to invert the definition of Bi, it is useful to derive some identities
involving products of the ε symbol.

First, contracting all indices of the product of two ε’s gives the trace:

εi1···id ε
i1···id = d! ε12···d ε

12···d = d! .

There are d! terms each contributing 1 to the trace, corresponding to the d! ways
of permuting the indices i1 · · · id.

Contracting all but one index on each ε,

εi1···id−1j ε
i1···id−1k = (d− 1)! δkj .
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This structure can be easily verified: If j = k then there are (d − 1)! terms that
contribute equally to the sum over the contracted indices, corresponding to the
(d − 1)! permutations of the indices i1 · · · id−1. If j 6= k then the sum vanishes
because each term in the sum involves at least one ε with repeated indices, which
vanishes by the antisymmetry of ε. (For example, switching the first two indices of
ε11i3···id, we get ε11i3···id = −ε11i3···id, so that ε11i3···id = 0.)

Similarly, by examining the symmetry structure of the product of ε’s with two
free indices on each ε, you can convince yourself that:

εi1···id−2jkε
i1···id−2lm = #

(

δlj δ
m
k − δlk δ

m
j

)

.

You can check that the right hand side has the correct symmetry properties under
exchange of indices. To evaluate the coefficient, we take the trace:

d! = εi1···id ε
i1···id = d! ε12···d ε

12···d = #
(

d2 − d
)

.

Hence, # = d!/(d2 − d) = (d− 2)!. So,

εi1···id−2jkε
i1···id−2lm = (d− 2)!

(

δlj δ
m
k − δlk δ

m
j

)

.

In three spatial dimensions, the relevant relation is,

εijkε
ilm =

(

δlj δ
m
k − δlk δ

m
j

)

.

Now, multiplying the definition of Bi by εilm and summing over i, we obtain,

εilmBi =
1

2
εilm εijk F

jk

=
1

2

(

δlj δ
m
k − δlk δ

m
j

)

F jk

=
1

2

(

F lm − Fml
)

= F lm.

Putting it all together, the components of the field strength tensor in 3 + 1
dimensions has the form,

F µν =

















0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0

















.
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With this definition, Maxwell’s equations take the usual form: ∂µF
µν = −4πJν

implies the two equations,

∇ · E = 4πρ

∇×B =
∂E

∂t
+ 4πJ

The Bianchi identity εµνρσ ∂νFρσ = 0, implies the remaining two of Maxwell’s
equations,

∇ ·B = 0

∇× E = −
∂B

∂t

In more than 3 + 1 dimensions, we can still define the electric field as Ei = Fi0,
but the magnetic field becomes,

Bi1···id−2
=

1

2(d− 2)!
εi1···idF

id−1id.

Hence, the magnetic field in d spatial dimensions is an antisymmetric tensor with
d− 2 indices, also known as a (d− 2)-form.
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