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Notes: Geometry I

We will start by reviewing Euclidean geometry in a language suitable for gener-
alizing to non-Euclidean geometries.

Consider a two-dimensional spatial manifold, i.e. no time coordinate. A point
in a two-dimensional manifold is specified by two numbers (x1, x2). In Cartesian
coordinates, a differential length element along a path is given by,

ds2 = (dx1)2 + (dx2)2

= (dx1, dx2)


 1

1





 dx1

dx2




=
2∑

i,j=1

dxi δij dx
j

≡ dxi δij dx
j.

The identity matrix δij is called the metric of Euclidean space in Cartesian coordi-
nates. In the last line of the equation above we introduced Einstein’s summation

convention: When an index (i, j, . . .) appears twice in a monomial it is automati-
cally summed over. From now on, if you ever want to repeat an index in a monomial
and not sum over its values, you must state your intent explicitly. (The rule does
not apply to sums of expressions, e.g. Ai +Bi, but it does apply for products, e.g.
AiB

i =
∑

iAiB
i.

Notice also that each index which was summed over appeared once in a lower
position and once in an upper position. There will be a reason later to distinguish
between upper and lower indices. For now we will always write a repeated index
that is summed over once as a superscript and once as a subscript in that expression.
The rules of index conventions are:

• An index which appears twice in a monomial is summed over, and should
appear once as a superscript and once as a subscript. Such an index is called
a “dummy index, and can be called anything.” For example, AiB

i = Aj B
j =

∑
iAiB

i.

• The position (superscript or subscript) of a free index (one that is not summed
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over) in an equation should be consistent throughout the equation. Hence,
Ai +Bi = C i is okay as an equation, bu Ai +Bi = C i is not.

• No index should ever appear more than twice in a monomial. Hence, Ai
ii has

no meaning.

With these rules, any equation involving products of vectors (for example xi) and
the metric gij will be consistent (covariant) if the coordinate system is changed, as
we shall explain in a little bit.

The length of a path is given by,

s =
∫
ds.

The meaning of the right hand side is as follows: parametrize the path by two func-
tions f i(τ) such that xi = f i(τ), where τ is a parameter that varies monotonically
from some value τ1 to another value τ2 along the path. Then,

ds = dτ

√√√√√

dx

1

dτ




2

+


dx

2

dτ




2

= dτ

√√√√dxi

dτ
δij

dxj

dτ

≡ dτ
√
ẋi δij ẋj

≡ dτ
√
ẋi ẋi.

Here we have defined ẋi ≡ dxi/dτ , and we have also defined ẋi ≡ δij ẋ
j. We will in

general use the metric to lower indices in this way. The purpose of all this shorthand
notation is simplicity, but if you are not yet comfortable with these manipulations
then feel free to use more ink than is necessary.

In 3-dimensions, the line element is ds2 =
∑3

i=1(dx
i)2 = dxi dxi, and in d-

dimensions it is ds2 =
∑d

i=1(dx
i)2 = dxi dxi. Notice that in our shorthand notation,

the repeated index is summed from 1 to d in general.

Coordinate transformations:

We will now repeat this discussion in other coordinate systems. In 2D polar
coordinates,

x1 = r cos θ
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x2 = r sin θ,

we can rewrite the line element as follows:

ds2 = (dx1)2 + (dx2)2

=


∂x

1

∂r
dr +

∂x1

∂θ
dθ




2

+


∂x

2

∂r
dr +

∂x2

∂θ
dθ




2

= (cos θ dr − r sin θ dθ)2 + (sin θ dr + r cos θ dθ)2

= dr2 (cos2 θ + sin2 θ) + dr dθ (−r cos θ sin θ + r cos θ sin θ)

+dθ2 (r2 sin2 θ + r2 cos2 θ)

= dr2 + r2 dθ2

= (dr, dθ)


 1

r2





 dr

dθ


 .

The matrix diag(1,r2) in the last line is the metric in polar coordinates.

We can generalize this to an arbitrary set of coordinates. Let’s say that the
metric in some coordinate system (x1, x2) is gij. Then in a different coordinate
system (x̃1, x̃2) such that x1 = f 1(x̃1, x̃2), x2 = f 2(x̃1, x̃2),

ds2 = dxi gij dx
j

=


 ∂xi

∂x̃m
dx̃m


 gij


∂x

j

∂x̃n
dx̃n




= dx̃m


 ∂x

i

∂x̃m

∂xj

∂x̃n
gij


 dx̃n

≡ dx̃m g̃mn dx̃
n.

In the new coordinate system the metric has become,

g̃mn =
∂xi

∂x̃m

∂xj

∂x̃n
gij.

We can invert this expression using the chain rule, namely

∂xi

∂x̃m

∂x̃m

∂xj
= δi

j,

where as usual the repeated index n is summed over and δi
j is the Kronecker delta,

which takes the values 1 if k = j and 0 otherwise.
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Multiplying the expression for g̃mn above by ∂x̃m

∂xk
∂x̃n

∂xl and summing over the re-
peated indices yields,

∂x̃m

∂xk

∂x̃n

∂xl
g̃mn =

∂x̃m

∂xk

∂xi

∂x̃m

∂x̃n

∂xl

∂xj

∂x̃n
gij

= δi
k δ

j
l gij = gkl.

In other words,

gkl =
∂x̃m

∂xk

∂x̃n

∂xl
g̃mn.

A matrix that transforms this way under coordinate transformations is called a
rank-two covariant tensor. In general, a rank-n covariant tensor has n indices

and transforms as,

T̃m1m2···mn
=

∂xi1

∂x̃m1

∂xi2

∂x̃m2
· · ·

∂xin

∂x̃mn
Ti1i2···in,

or, inverting the epression as we did for the metric,

Ti1i2···in =
∂x̃m1

∂xi1

∂x̃m2

∂xi2
· · ·

∂x̃mn

∂xin
T̃m1m2···mn

.

Notice that this is a generalization of the transformation rule of the metric, and
each lower index is contracted with a factor like ∂x̃m

∂xi T̃...m... upon a coordinate trans-
formation.

On the other hand, recall that the coordinate differentials transformed as,

dxi =
∂xi

∂x̃m
dx̃m.

Notice that compared to the transformation of a vector with a lower (covariant)
index, the positions of x and x̃ in the derivative are reversed. An object that
transforms like dxi is called a contravariant vector, to distinguish it from a
covariant vector like dxi ≡ gij dx

j. This is the reason we have been distinguishing

upper from lower indices – tensors with upper indices and lower indices transform

differently under coordinate transformations.

Generalizing the transformation of a contravariant vector, we can similarly define
the transformation properties of a tensor with n upper indices (i.e. a rank-n
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contravariant tensor),

T i1i2···in =
∂xi1

∂x̃m1

∂xi2

∂x̃m2
· · ·

∂xin

∂x̃mn
T̃m1m2···mn.

A vector is a rank-1 tensor, and a scalar is a rank-0 tensor. By contracting
contravariant and covariant indices, i.e. by setting the upper and lower indices
equal and summing over them, we get tensors that transform as though those
indices were removed. For example, consider T k

ij = gijV
k for some contravariant

vector V k. Under a coordinate transformation,

T k
ij =

∂xk

∂x̃l

∂x̃m

∂xi

∂x̃n

∂xj
T̃ l

mn.

Now consider T j
ij =

∑
j gijV

j. The tensor with two indices contracted transforms
as,

T j
ij =

∂xj

∂x̃l

∂x̃n

∂xj

∂x̃m

∂xi
T̃ l

mn

= δn
l

∂x̃m

∂xi
T̃ l

mn

=
∂x̃m

∂xi
T̃ n

mn.

This is how a covariant vector transforms, so T j
ij transforms as a tensor without

the indices j. It is therefore consistent with our rules for transforming indices to
define Vi ≡ gijV

j. This is why we lower indices with the metric. Similarly, we
can raise indices with the inverse metric: V i ≡ gijVj.

The metric or its inverse can also be used to form tensors of lower rank. For
example, consider a tensor Aijk, and contract it with the metric gij, i.e. form
the product gij Aijk and sum over i and j. As in the previous example, the con-
tracted tensor transforms a covariant vector. Contractions with the metric are
called traces. Be careful to note that these are not ordinary matrix traces unless
the metric is the identity δij.

Note also that in our notation, gj
i = gik g

kj = δj
i , so the metric with one lower

and one upper index is always the Kronecker delta, in any geometry. (This is true
also in spacetime.)
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Other useful coordinate systems:

Spherical coordinates:

x1 = r cosφ sin θ

x2 = r sinφ sin θ

x3 = r cos θ

ds2 = dr2 + r2 dθ2 + r2 sin2 θ dφ2

Cylindrical coordinates:

x1 = r cos θ

x2 = r sin θ

x3 = z

ds2 = dz2 + dr2 + r2dθ2

Areas and Volumes

In 2D, the area of a region is obtained by integrating an area element, which we
will also call the two-dimensional volume element, over that region. In Cartesian
coordinates the area element is dx1 dx2. In polar coordinates it is r dr dθ.

Similarly, in 3D the volume element in Cartesian coordinates is dx1 dx2 dx3; in
spherical coordinates it is r2 sin θ dr dθ dφ; in cylindrical coordinates it is r dr dθ dz.

Notice that each of these expressions can be written in terms of the metric
as,

√
det |gkl|

∏d
i=1 dx̃

i, where x̃i are the relevant coordinates. This expression
gives the volume element in any dimension d in an arbitrary coordinate system.
This volume element is invariant under a change of coordinates. In other words,
the volume of a region so defined does not depend on the choice of coordinates.
You can see this by considering the Jacobian that appears in the transformation
ddx→ det |∂xk/∂x̃l| ddx̃, and comparing with the transformation of g ≡ det |gij| =
(det |∂x̃i/∂xj|)2 det |g̃kl|.

A word of caution: The symbol g is commonly used to denote the determinant
of the metric gij, not its trace (which is gij g

ij = d in d-dimensions).
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