Physics 601, Fall 2021Homework 2, due Monday, September 27.

1. Problems from Goldstein, Poole & Safko

Chapter 1: 1.9, 1.14

Chapter 2: 2.12, 2.20

2. Noether's Theorem

Consider a particle moving in a radial potential $V(|\mathbf{r}|)$, where $|\mathbf{r}| = \sqrt{x^2 + y^2 + z^2}$, with no other forces acting on the particle.

A rotation about the z-axis acts on the particle position by the transformation,

(x)		$\left(\cos \epsilon \right)$	$-\sin\epsilon$	0)	(x)	
y	\rightarrow	$\sin\epsilon$	$\cos\epsilon$	0	y	
$\left(z \right)$)	0	0	1]	$\left(z \right)$	

a) Show that the Lagrangian $L = 1/2 m \dot{\mathbf{r}}^2 - V(|\mathbf{r}|)$ is invariant under the rotation.

b) Identify Δx , Δy , and Δz , where for small rotation angle ϵ the rotation acts by $x \to x + \epsilon \Delta x + \mathcal{O}(\epsilon)^2$, and analogously for y and z.

c) Use Noether's theorem to identify the conserved quantity associated with invariance under rotations about the z-axis.