Physics 601, Fall 2021

Homework 2, due Monday, September 27.

1. Problems from Goldstein, Poole \& Safko

Chapter 1: 1.9, 1.14

Chapter 2: 2.12, 2.20
2. Noether's Theorem

Consider a particle moving in a radial potential $V(|\mathbf{r}|)$, where $|\mathbf{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$, with no other forces acting on the particle.

A rotation about the z-axis acts on the particle position by the transformation,

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
\cos \epsilon & -\sin \epsilon & 0 \\
\sin \epsilon & \cos \epsilon & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) .
$$

a) Show that the Lagrangian $L=1 / 2 m \dot{\mathbf{r}}^{2}-V(|\mathbf{r}|)$ is invariant under the rotation.
b) Identify $\Delta x, \Delta y$, and Δz, where for small rotation angle ϵ the rotation acts by $x \rightarrow x+\epsilon \Delta x+\mathcal{O}(\epsilon)^{2}$, and analogously for y and z.
c) Use Noether's theorem to identify the conserved quantity associated with invariance under rotations about the z-axis.

