
Physics 611 Homework #1 with answers handed out 01 September 2016

1. In Heaviside-Lorentz units the force between two point charges can be written as (in magnitude)

F =
1

4π

|q1q2|

r2
,

and the Lorentz force is
~F = q~E+ q

~v

c
× ~B.

a) Write Maxwell’s equations in Heaviside-Lorentz units.
b) The energy density in the electric and magnetic fields in SI units is

u =
ε0

2
~E2 +

1

2µ0
~B2.

Rewrite the energy density formula in gaussian and in Heaviside-Lorentz units.
c) Work out what magnetic field in gaussian units corresponds to a magnetic field of 1 Tesla in SI units.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a) Looking at the above Coulomb and Lorentz force laws, to get from SI to HL units,

1

ε0
→ 1, µ0 =

1

ε0c2
→ 1

c2
, B→ 1

c
B . (1)

The SI Maxwell equations,

∇ · E =
ρ

ε0
∇× E = −

∂B

∂t

∇ · B = 0 ∇× B = µ0J+
1

c2
∂E

∂t
(2)

become the HL Maxwell equations,

∇ · E = ρ ∇× E = −
1

c

∂B

∂t

∇ · B = 0 ∇× B =
1

c
J+

1

c

∂E

∂t
(3)

b) Using the same substitutions, the energy density becomes in HL units

u =
1

2

(
E2 + B2

)
. (4)

For the gaussian case, the substitutions that convert from SI to gaussian units were given in class and
were

1

ε0
→ 4π, µ0 =

1

ε0c2
→ 4π

c2
, B→ 1

c
B . (5)

Tis leads to

u =
1

8π

(
E2 + B2

)
. (6)



c) An alternative to calling the gaussian unit of charge a statcoulomb is to call it an “electrostatic unit”
or esu. In class we worked out that 1 C = 3× 109 esu, and if we go back one step before the end, we
could have left this as

1 C = 10−1 c

cm/sec
esu , (7)

where c is the speed of light.
For the magnetic field, consider that a 1 Tesla field upon a 1 C change moving at 1 m/s (in an appropriate
direction) gives a 1 N force. From ~F = q(~v/c)× ~B, this is also

B =
F

v

c

q
=

105 dyne

102 cm/sec
· c

10−1 c
cm/secesu

= 104
dyne

esu
(8)

In gaussian units, when we are measuring a B-field we choose to let “dyne/esu” be called “gauss,” and
so

1 Tesla = 104 gauss . (9)
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2. Show that for a general but suitably differentiable function z = z(x,y) that

∂x

∂y

∣∣∣∣
z

∂y

∂z

∣∣∣∣
x

∂z

∂x

∣∣∣∣
y

= −1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Given z = z(x,y), one has

dz =
∂z

∂x

∣∣∣∣
y

dx+
∂z

∂y

∣∣∣∣
x

dy . (10)

Setting dx→ 0, one can rearrange this to

∂y

∂z

∣∣∣∣
x

=
1

∂z
∂y

∣∣∣
x

, (11)

and setting dz = 0 leads to

∂x

∂y

∣∣∣∣
z

= −

∂z
∂y

∣∣∣
x

∂z
∂x

∣∣
y

. (12)

Now elementary multiplication gives the desired result.
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3. ε exercises. Tensor εijk (where each of i, j, k has allowed values 1, 2, 3) is a totally antisymmetric
tensor normalized by ε123 = 1.
Notice that the ε-symbol is useful for writing cross products: (~A× ~B)i = εijkAjBk ≡

∑
jk εijkAjBk .

a) Convince yourself that ∑
i

εijkεilm ≡ εijkεilm = δjlδkm − δjmδkl .

b) Show that

~∇×
(
~∇× ~B

)
= −∇2~B+ ~∇

(
~∇ · ~B

)
.

c) Show that
(~A× ~B) · (~C× ~D) = (~A · ~C)(~B · ~D) − (~A · ~D)(~B · ~C) .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a) Be thou convinced.
b) [

~∇×
(
~∇× ~B

)]
i
= εijk∇j

(
~∇× ~B

)
k
= εijkεklm∇j∇lBm

=
(
δilδjm − δimδjl

)
∇j∇lBm = ∇i

(
~∇ · ~B

)
−∇2Bi

=
[
−∇2~B+ ~∇

(
~∇ · ~B

)]
i

. (13)

c)

(~A× ~B) · (~C× ~D) = (~A× ~B)i(~C× ~D)i = εijkεilmAjBkClDm

=
(
δjlδkm − δjmδkl

)
AjBkClDm

= AjCjBkDk −AjDjBkCk = (~A · ~C)(~B · ~D) − (~A · ~D)(~B · ~C) . (14)
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4. Jackson problem 6.1.
a) Find solution to (

∇2 −
1

c2
∂2

∂t2

)
Ψ(~x, t) = −4πf(~x, t)

for f(~x ′, t ′) = δ(x ′)δ(y ′)δ(t ′).

b) Same for f(~x ′, t ′) = δ(x ′)δ(t ′).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a) Use

Ψ(~x, t) =

∫
d3x ′

[f(~x ′, t ′)]ret
|~x− ~x ′|

.

The line of charge is the line x ′ = y ′ = 0. Can choose to calculate for z = 0 and with x2 + y2 = ρ2.

|~x− ~x ′|→
√
ρ2 + (z ′)2,

and

Ψ(~x, t) =

∫∞
−∞ dz ′

δ(t−
√
ρ2 + (z ′)2/c)√
ρ2 + (z ′)2

.

The δ-function is non-zero for
√
ρ2 + (z ′)2 = ct, or z ′ = ±

√
c2t2 − ρ2, and we note that ct has to be

at least as large as ρ for this to occur. A factor θ(ct− ρ) will be tacit until the last step.

Ψ(~x, t) = 2

∫∞
0
dz ′

δ(t−
√
ρ2 + (z ′)2/c√

ρ2 + (z ′)2
=

2

ct

(
1

c

∣∣∣∣ ∂∂z ′
√
ρ2 + (z ′)2

∣∣∣∣
z ′=
√
c2t2−ρ2

)−1

=
2

ct

(
1

c

z ′√
c2t2 − ρ2

)−1

z ′=
√
ρ2+(z ′)2

=
2

ct

c · ct√
c2t2 − ρ2

or

Ψ(~x, t) =
2c θ(ct− ρ)√
c2t2 − ρ2

b) Same in 1D, i.e., plane of charge. The plane of charge is the x ′ = 0
plane. Find Ψ at point y = z = 0 and x > 0. Let s2 = (y ′)2 + (z ′)2, so
that

|~x− ~x ′|→
√
x2 + s2,

and

Ψ(~x, t) =

∫∞
−∞ dy ′dz ′

δ(t−
√
x2 + s2/c)√
x2 + s2

= π

∫∞
0
ds2

δ(t−
√
x2 + s2/c)√
x2 + s2

=
π

t
θ(ct− x)

(∣∣∣∣ ∂∂s2√x2 + s2
∣∣∣∣√
x2+s2=ct

)−1

.

x’ = 0

x

Thus
Ψ(~x, t) = 2πc θ(ct− x).
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5. Jackson problem 6.11. (If you are uncertain about the “solar wind,”, you may omit the response to
the question in the last sentence of the problem.)
Plane wave on flat totally absorbing screen.
a) Show pressure on screen equals energy/volume of incoming wave.
b) For C = 1.4kW/m2 on sail of 1 gm/cm2, find maximum acceleration.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a) The force given in terms of a surface integral involving the stress tensor was derived from momentum
conservation,

〈~F〉 =
∮
S

da n̂ · 〈
←→
T 〉 . (15)

For the totally absorbing screen perpendicular to the
propagation direction of a wavefront, surround it by
a closed surface with thin rectangular sides.

3D view side view

front
surface

back
surface

−z

v

screen

Because the screen is totally absorbing, there is no field immediately behind it, but the fields just before
it are what they would have been in the absence of the screen. In addition, four sides of the surface are
very thin, so the surface integral for a wave traveling in the +z direction is just,

〈~F〉 = −

∫
front surface

da ẑ · 〈
←→
T 〉 , (16)

or

P = −〈Tzz〉 (17)

for the present case. With

Tij = ε0

[
EiEj −

1

2
δij~E

2

]
+

1

µ0

[
BiBj −

1

2
δij~B

2

]
(18)

get

P =
1

2
ε0〈~E2〉+

1

2µ0
〈~B2〉, (19)

so the pressure is equal to the (time averaged) energy density in the wave.

b) Near the earth, the energy per unit volume of sunlight is the solar constant C divided by the speed
of light c, so that the pressure P is

P = C/c = 1.4× 103 W/m2 ÷ 3× 108m/s = 4.67× 10−6 N/m2. (20)

For the density σ = 10 kg/m2,

a =
F

m
=
P

σ
= 4.67× 10−7m/s2. (21)
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