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For a wave traveling in the z direction, a compact profile beam might be gaussian in the transverse
direction. But most beams di↵ract and spread, so that the width of the gaussian would depend on how far
the beam had propagated, meaning the width would be z-dependent. If the spread is not fast, the main
z-dependence would still be the wave number oscillation. For the scalar case, or for a single component of
a vector field, we try a solution

�(~x, t) = u(~x)ei(kz�!t) = u(x, y, z)ei(kz�!t), (1)

with k = !/c, and use it to the Helmholtz equation supposing the derivative @u/@z is small compared to
ku, and that @2u/@z2 is really small. This is the “paraxial” approximation.

The Helmholtz equation is
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and dropping the second z-derivative of u, obtain
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u(x, y, z) = 0. (4)

In cylindrical coordinates, when there is azimuthal symmetry, this is
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For the trial solution, take a spreading gaussian,

u(⇢, z) = ei(f(z)+g(z)⇢2) (6)

(where g can be a complex function, to get a compact gaussian). Then,
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Substituting,
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This equation must be true at all ⇢, so
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g2. (9)
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This is a linear equation,
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with solution
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where we chose the integration constant to be pure imaginary.

The solution so far is
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Also from Eq. (8),
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Since
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where  (z) = arctan (z/zR), which is sometimes called the Guoy phase, the full solution is

�(~x, t) = u(~x)ei(kz�!t) =
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The minimum width of the gaussian is given by the minimum width parameter
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which can allow us to determine zR if some starting width is known,
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Thus zR can get fairly large if w
0

is macroscopic and wavelength � is for visible light. The width at general
z is given in terms of the width function
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Turning to the phase term and parameterizing surfaces of constant phase as (⇢, z) = (⇢, z
on-axis

+ �z), the
first two terms in the phase (realizing that k � 1/zR) give a surface of constant phase if

k
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neglecting the di↵erence between z and z
on-axis

in the ⇢2 term. The relation between �z and ⇢2, for fixed
z
on-axis

, corresponds to a spherical wavefront of radius

Rz =
z2 + z2R

z
. (20)

The flat wavefront at z = 0 becomes curved as it propagates.

With the extra notation, the paraxial Helmholtz equation solution is

�(~x, t) = (w
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/wz) e
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z ei(kz+k⇢2/2R
z

� (z)�!t). (21)

Main source: Course notes from University of Colorado,

Instructor: C. Tim Lei, Course: Physics 4510 Optics

General webpage: http://www.colorado.edu/physics/phys4510/phys4510 fa05/

Specific webpage: http://www.colorado.edu/physics/phys4510/phys4510 fa05/Chapter5.pdf

Notes apparently from Fall 2005.

Note on opening angle: At long distances, z � zR, the width parameter of the beam is
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2
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and the opening angle of the beam (axis to edge) at long distances is
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Two examples,

⇥ =

(
0.234 rad. = 13.4� � = 30mm, w

0

= 40mm

0.21mrad. = 0.012� � = .65⇥ 10�3 mm (red light), w
0

= 1mm
(24)

In the latter case, for z = 55 m (about 2 m less than the full length of the 1st floor corridor in Small
Physical Laboratory), the spot radius would be about 11.5 mm or 23 mm diameter. A measurement with
an available red laser pointer gave about twice this. (Thanks to M. Andriotty for assistance.)
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Selected figures (two from Mathematica notebook “GaussianBeam.nb” and one from Wikipedia)
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Wavefronts, gaussiam beam, λ = 30 mm, w0 = 40 mm
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Gaussiam beam, λ = red light, w0 = 1 mm
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