1. [25 points total] Let ψ be a Dirac field, which we call the electron field, let ϕ be a neutral scalar field, and let V^{μ} be a neutral vector field. Consider the following Lagrangians,
a) $\mathcal{L}=\mathcal{L}_{0}+e \bar{\psi} \gamma_{\mu} \psi V^{\mu}$,
b) $\mathcal{L}=\mathcal{L}_{0}+i f \bar{\psi} \gamma_{5} \psi \phi$,
c) $\mathcal{L}=\mathcal{L}_{0}+h \bar{\psi} \psi \phi^{2}$,
where e, f, and h are constants and \mathcal{L}_{0} is the free Lagrangian. For each Lagrangian, draw all the lowest nontrivial order Feynman diagrams that contribute to electron-positron scattering. (I believe there should be two diagrams in each case.) Using the Feynman diagrams as guidance, successfully write down the electron-positron scattering amplitudes for each case.
2. [35 points total] Consider a hypothetical decay $\Lambda^{0} \rightarrow p+\pi^{-}$. For this problem, Λ^{0} is a polarized spin- $1 / 2$ particle of mass m_{Λ} and momentum $P ; p$ is a massless (this is where the "hypothetical" comes in) spin- $1 / 2$ proton of momentum p; and π^{-}is a massless spin- 0 particle of momentum k. Let the Lagrangian density be

$$
\mathcal{L}=\bar{\psi}_{p}\left(g_{V} \gamma_{\mu}-g_{A} \gamma_{\mu} \gamma_{5}\right) \psi_{\Lambda} \times i \partial^{\mu} \phi+\text { hermitian conjugate },
$$

where g_{V} and g_{A} are real constants, and ϕ is the field for the π^{-}.
(a) Draw the Feynman diagram for the decay.
(b) Write down the amplitude \mathcal{M} for the decay.
(c) Work the amplitude into the form

$$
\mathcal{M} \propto m_{\Lambda} \bar{u}(p)\left(g_{V}+g_{A} \gamma_{5}\right) u(P),
$$

where the polarization arguments are tacit.
(d) Sum $|\mathcal{M}|^{2}$ over the appropriate polarizations.

Query: Did you have the minus sign in $\left\{\bar{u}(p)\left(g_{V}+g_{A} \gamma_{5}\right) u(P, S)\right\}^{\dagger}=\bar{u}(P, S)\left(g_{V}-g_{A} \gamma_{5}\right) u(p)$?
Further small note: The case of real Λ^{0}, real p, and real π^{-}is not so far from the above with $g_{V} \approx g_{A}$.
3. [20 points total] Evaluate the integral $\int d \alpha d \beta e^{\alpha M \beta}$ for the case that α and β are independent Grassmann variables, and M is an ordinary number (or a 1×1 matrix).
4. [20 points total] (a) For the three lowest energy levels of hydrogen, indicate the possible E1 and M1 radiative decays ($n L \rightarrow n^{\prime} L^{\prime}+\gamma$), labeling each as E1 or M1 as the case may be. To keep the diagram simpler, only draw decays where n and n^{\prime} differ by one unit. Neglect energy differences among states with the same n.

15 \qquad
(b) What do you expect is the main decay of the 3 S state? Why?
(c) Of all the states in the diagram, which, if any, is (are) metastable? Why?

