
Classical E&M II Physics 611

Final Exam 3 hours 10 or 16 December 2015, 9:00 am

Turn in this question sheet with answers, plus your work sheets. There are 3 problems.

Open text (Jackson only), open notes (this class only), open old homework (this class only).

Name:

Three worksheets are attached.

1. [30 points total]
a) With the Born approximation, compute the unpolarized differential cross section for the scat-
tering electromagnetic radiation (with wave number k) off a uniform dielectric sphere of radius
a and relative dielectric constant εr = ε/ε0 ≈ 1. [Note the word “unpolarized.” Any polarization
sums or averages must be done.]

b) Show that in the limit ka ¿ 1 the differential cross section reduces to the small sphere result
found in your notebooks, and which may be expressed as,

dσ

dΩ
= 1

18
k4a6 |1−εr |2 (1+cos2θ).

c) Express the q = |~q| that may have appeared in part (a) in terms of k and the angle θ between
the incoming and outgoing waves. Recall ~q = k(n̂0 − n̂) and where n̂0 is the direction of the
incoming wave and n̂ is the direction of the outgoing wave,

d) For ka À 1, choose the statement that is closest to true:
(i) The differential cross section is highly peaked in the forward direction, and in particular

quite large at θ = 0.
(ii) The differential cross section is highly peaked in the forward direction, although zero at

exactly θ = 0.
(iii) The differential cross section still has broad support over a wide range of angles.
(iv) None of the above is close to true.

Answers:

a)
dσ

dΩ
= 1

2
k4a6|εr −1|2 (

1+cos2θ
)( j1(qa)

qa

)2

or equivalent

b) Will find on work sheets.

c) q = 2k sin(θ/2)

d) Write a roman numeral here: ( i ).



2. [30 points total] Charges +q and −q exist at the ends of a neutral rod of length d . The rod
rotates in the x-y plane with constant angular velocity ω about the z axis which passes through
its center.

a) If we express the dipole moment as ~p(t ) = Re(~pe−iωt ), find ~p.

b) Compute the radiated power per unit solid angle dP/dΩ to leading non-trivial order (electric
dipole radiation).

c) Find the total radiated power P .

Answers:

a) ~p = qd
(
1, i ,0

)
b)

dP

dΩ
= ck4q2d 2

32π2ε0

(
1+cos2θ

)
c)

P = ck4q2d 2

6πε0

3. [40 points total]
(a) A rectangular waveguide made from a nearly perfect conductor has sides of length a and b,
in the x and y directions, respectively. Consider the TM modes (Ez 6= 0) and starting with an
expression like

Ez(x, y) = (A coskx x +B sinkx x)
(
C cosky y +D sinky y

)
find an expression for Ez(x, y) that satisfies the boundary conditions. (If you get help from a
footnote in Jackson, you should work out why the information found there is correct.)

(b) Give an expression for γ2 = ε0µ0ω
2 −k2 (where k is the wavenumber in the z-direction in

the full expression Ez(x, y, z, t ) = ReEz(x, y)e i (kz−ωt )). Also specifically give γ2
lowest for the lowest

nontrivial mode.

(c) Find the transverse electric field ~Et .

(d) Discuss (briefly) how you would proceed to calculate the energy loss in the case that the
conducting walls of the waveguide were not perfect conductors.

Answers:

a) Ez(x, y) = E0 sin πmx
a sin πny

b ,

b) γ2 =π2
(

m2

a2 + n2

b2

)
,

γ2
lowest =π2

(
1

a2 + 1
b2

)
,

c) ~Et = iπk
γ2

(
mx̂

a cos πmx
a sin πny

b + nŷ
b sin πmx

a cos πny
b

)
.

d) Discussion: will find on work sheets.
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1. One place to start is

ε∗ · Asc

D0
= k2

4π

∫
d 3x e i~q ·~x

{
ε∗ ·ε0

δε(x)

ε0
+ (n ×ε∗) · (n0 ×ε0)

δµ(x)

µ0

}
(1)

with

dσ

dΩ
= |ε∗ · Asc |2

|D0|2
. (2)

For the case at hand,

ε∗ · Asc

D0
= k2

4π
ε∗ ·ε0(εr −1)

∫ a

0
r 2dr

∫ 1

−1
2πd(cosθ) e i qr cosθ

= k2(εr −1)

2i q
ε∗ ·ε0

∫ a

0
r dr

(
e i qr −e−i qr

)
= k2(εr −1)

2i q
ε∗ ·ε0

∂

i∂q

∫ a

0
dr

(
e i qr +e−i qr

)
=−k2(εr −1)

q
ε∗ ·ε0

∂

∂q

(
sin qa

q

)
= k2a3(εr −1)ε∗ ·ε0

sin qa −qa cos qa

q3a3
(3)

If desired, one can also write this using a spherical Bessel function,

ε∗ · Asc

D0
= k2a3(εr −1)ε∗ ·ε0

j1(qa)

qa
. (4)

The differential cross section with all polarizations still indicated is

dσ

dΩ
= k4a6|εr −1|2 |ε∗ ·ε0|2

(
j1(qa)

qa

)2

. (5)

There are four polarization possibilities. If the incoming and outgoing polarizations are both
in the scattering plane, one gets ε∗ · ε0 = cosθ. If they are both perpendicular to the scattering
plane, ε∗ · ε0 = 1. The other possibilities give zero. Hence with the average over initial polariza-
tions and the sum over final,

dσ

dΩ
= 1

2
k4a6|εr −1|2 (

1+cos2θ
)( j1(qa)

qa

)2

. (6)

(b) For ka → 0 one also has qa → 0, and we can use j1(qa) = (1/3)qa for small arguments (or the
equivalent using the longer form farther above), so that

dσ

dΩ
= 1

18
k4a6|εr −1|2 (

1+cos2θ
)

. (7)

(c)

q2 = (~q)2 = k2(n2 +n2
0 −2n ·n0) = 2k2(1−cos2θ) = 4k2 sin2 θ

2
, (8)

q = 2k sin
θ

2
. (9)

(d) For large ka, the cross section is forward peaked, and not zero at θ = 0: ( i ). (The Bessel
function j1(0) = 0, but the limit ( j1(qa)/qa)q→0 is finite. For larger angles, j1(qa) is limited in
magnitude, and qa is rising seriously.)
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2. (a) The charge +q is located at

~x = d

2
(cosωt , sinωt ,0) , (10)

and the charge −q is opposite this. Hence

~p(t ) =∑
qi~xi (t ) = qd (cosωt , sinωt ,0) = qd Re

(
1, i ,0

)
e−iωt , (11)

and

~p = qd
(
1, i ,0

)
. (12)

(b) Electric dipole radiation radiates power in different directions according to

dP

dΩ
= ck4

32π2ε0

∣∣(n̂ ×~p)× n̂
∣∣2 . (13)

Work out:

(n̂ ×~p)× n̂ = ~p − n̂(n̂ ·~p)

|(n̂ ×~p)× n̂|2 = |~p|2 − (n̂ ·~p)(n̂ ·~p∗) = q2d 2 (
2− sin2θ

)= q2d 2 (
1+cos2θ

)
(14)

Hence,

dP

dΩ
= ck4q2d 2

32π2ε0

(
1+cos2θ

)
. (15)

(c) Integrate (1+cos2θ) over solid angle to get (4/3)4π, and

P = ck4q2d 2

6πε0
. (16)
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3. Ez(x, y) for a waveguide gives the (x,y) dependence of Ez(x, y, z, t ) = Ez(x, y)e i (kz−ωt ) and
satisfies an equation

(∂2
x +∂2

y +γ2)Ez(x, y) = 0, (17)

and is solved by functions of the form,

Ez(x, y) = (A coskx x +B sinkx x)
(
C cosky y +D sinky y

)
. (18)

(a) With the boundary conditions, namely that Ez = 0 at the sides of the waveguide, the solution
becomes (in some suitable coordinate system),

Ez(x, y) = E0 sin
πmx

a
sin

πny

b
, (19)

where m and n are integers ≥ 1.

(b) From the solution and the defining equation,

γ2 =π2
(

m2

a2
+ n2

b2

)
. (20)

The lowest mode comes when m = n = 1, leading to,

γ2
lowest =π2

(
1

a2
+ 1

b2

)
. (21)

(c) The x and y components of the electric field are found from

~Et (x, y) = i k

γ2
~∇t Ez(x, y), (22)

so

~Et (x, y) = iπk

γ2

(
mx̂

a
cos

πmx

a
sin

πny

b
+ nŷ

b
sin

πmx

a
cos

πny

b

)
. (23)

(d) The energy loss in the conductor can be obtained from the surface resistance and the tan-
gential magnetic field at the surface of the conductor. The energy loss per unit area of conductor
surface is

dPloss

d A
= ρsurf |~K |2 =

√
µcω

2σ
|~Htang|2, (24)

where ρsurf is the surface resistance and ~K is the surface current, whose magnitude is numeri-
cally equal to the magnitude of the component of ~H tangential to the surface under study. We
would need to know the conductivity of the conductor, σ, have to be told the frequency ω, be
told the permeability of the conductor µc , which could be close to that of free space but isn’t
always. We would also have to work out the x and y components of the magnetic field, which
can be done from

~Ht (x, y) = iεµω

γ2
ẑ ×~∇t Ez(x, y), (25)

and figure out which components were tangential to the surface. (For information, the “t” in
Ht stands for transverse—to the long direction of the waveguide—not tangential.)
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